A307699 Numbers k such that there is no integer partition of k with exactly k-1 submultisets.
0, 1, 2, 6, 8, 12, 14, 18, 20, 24, 26, 30, 32, 38, 42, 44, 48, 50, 54, 60, 62, 66, 68, 72, 74, 80, 84, 86, 90, 92, 98, 102, 104, 108, 110, 114, 122, 126, 128, 132, 134, 138, 140, 146, 150, 152, 158, 164, 168, 170, 174, 180, 182, 186, 192, 194, 198, 200, 206
Offset: 1
Keywords
Examples
The sequence of positive terms together with their prime indices begins: 1: {} 2: {1} 6: {1,2} 8: {1,1,1} 12: {1,1,2} 14: {1,4} 18: {1,2,2} 20: {1,1,3} 24: {1,1,1,2} 26: {1,6} 30: {1,2,3} 32: {1,1,1,1,1} 38: {1,8} 42: {1,2,4} 44: {1,1,5} 48: {1,1,1,1,2} 50: {1,3,3} 54: {1,2,2,2} 60: {1,1,2,3} Partitions realizing the desired number of submultisets for each non-term are: 3: (3) 4: (22) 5: (41) 7: (511) 9: (621) 10: (4411) 11: (71111) 13: (9211) 15: (9111111) 16: (661111) 17: (9521) 19: (94411) 21: (981111) 22: (88111111) 23: (32222222222) 25: (99421) 27: (3222222222222) 28: (994411) 29: (98222222)
Crossrefs
Programs
-
Mathematica
Select[Range[50],Function[n,Select[IntegerPartitions[n], Times@@(1+Length/@Split[#])==n-1&]=={}]]
Extensions
More terms from Alois P. Heinz, May 30 2019
Comments