A307700 Number of evolutionary duplication-loss-histories with n leaves of the caterpillar species tree with 5 leaves.
5, 69, 1230, 24843, 541315, 12426996, 296546600, 7292489761, 183702242491, 4719659859582, 123261298705663, 3263950145153931, 87452457544863592, 2366980142343757033, 64628573978046899555, 1778185743733577832862, 49254755849062502247446, 1372455474283175885070422
Offset: 1
Keywords
Examples
The caterpillar species tree with 5 leaves is equal to a / \ b 5 / \ c 4 / \ d 3 / \ 1 2 For convenience the internal nodes are labeled by a,b,c,d, and the leaves by 1,2,3,4,5. The associated nodes in the histories will be denoted by the same labels. The a(1)=5 histories with n=1 leaf are created by the following growth process: a a a a a / / / / \ b b b b 5 / / / \ c c c 4 / / \ d d 3 / \ 1 2 after four loss events each.
Links
- C. Chauve, Y. Ponty, M. Wallner, Counting and sampling gene family evolutionary histories in the duplication-loss and duplication-loss-transfer models, arXiv preprint arXiv:1905.04971 [math-CO], 2019.
Crossrefs
Programs
-
PARI
my(z = 'z + O('z^25), t = sqrt(1-4*z), u = sqrt(-5+6*t+4*z), v = sqrt(-t*u+3*t+3*u-4), w = sqrt(-t*v+3*t+3*v-4)); Vec(1/2-(1/2)*sqrt(-4-t*w+3*t+3*w)) \\ Michel Marcus, May 07 2019
Formula
G.f.: 1/2 - (1/2)*sqrt(-4 - t*w + 3*t + 3*w) where t = sqrt(1 - 4*z), u = sqrt(-5 + 6*t + 4*z), v = sqrt(-t*u + 3*t + 3*u - 4) and w = sqrt(-t*v + 3*t + 3*v - 4).
Comments