A307726 Number of partitions of n into 2 prime powers (not including 1).
0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 2, 4, 3, 4, 4, 4, 2, 4, 3, 4, 4, 4, 3, 5, 3, 6, 4, 7, 4, 7, 2, 5, 4, 6, 3, 5, 3, 5, 5, 6, 2, 7, 3, 7, 4, 6, 2, 8, 3, 7, 4, 6, 2, 7, 3, 6, 4, 7, 2, 9, 2, 7, 5, 7, 2, 9, 3, 7, 6, 7, 3, 9, 2, 8, 4, 6, 4, 10, 3, 9, 4, 7, 3, 11, 4, 8, 3, 7, 2, 10, 2, 8, 3, 8
Offset: 0
Examples
a(10) = 3 because we have [8, 2], [7, 3] and [5, 5].
Links
Programs
-
Maple
# note that this requires A246655 to be pre-computed f:= proc(n, k, pmax) option remember; local t, p, j; if n = 0 then return `if`(k=0, 1, 0) fi; if k = 0 then return 0 fi; if n > k*pmax then return 0 fi; t:= 0: for p in A246655 do if p > pmax then return t fi; t:= t + add(procname(n-j*p, k-j, min(p-1, n-j*p)), j=1..min(k, floor(n/p))) od; t end proc: map(f, [$0..100]); # Robert Israel, Apr 29 2019
-
Mathematica
Array[Count[IntegerPartitions[#, {2}], _?(AllTrue[#, PrimePowerQ] &)] &, 101, 0]
Formula
a(n) = [x^n y^2] Product_{k>=1} 1/(1 - y*x^A246655(k)).