A307727 Number of partitions of n into 3 prime powers (not including 1).
0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 4, 5, 6, 6, 8, 7, 9, 9, 10, 10, 12, 11, 14, 13, 14, 13, 16, 13, 18, 15, 18, 16, 20, 18, 23, 20, 25, 23, 26, 22, 28, 23, 30, 23, 30, 23, 32, 26, 32, 27, 34, 28, 37, 28, 36, 29, 40, 31, 43, 28, 42, 32, 44, 32, 46, 32, 46, 35, 46, 35, 50, 34, 51, 37, 53, 36, 59, 36, 57, 41
Offset: 0
Examples
a(11) = 4 because we have [7, 2, 2], [5, 4, 2], [5, 3, 3] and [4, 4, 3].
Links
Programs
-
Maple
f:= proc(n,k,pmax) option remember; local t,p,j; if n = 0 then return `if`(k=0, 1, 0) fi; if k = 0 then return 0 fi; if n > k*pmax then return 0 fi; t:= 0: for p in A246655 do if p > pmax then return t fi; t:= t + add(procname(n-j*p, k-j, min(p-1,n-j*p)),j=1..min(k,floor(n/p))) od; t end proc: seq(f(n,3,n),n=0..80) # Robert Israel, Apr 25 2019
-
Mathematica
Array[Count[IntegerPartitions[#, {3}], _?(AllTrue[#, PrimePowerQ] &)] &, 81, 0]
Formula
a(n) = [x^n y^3] Product_{k>=1} 1/(1 - y*x^A246655(k)).
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} [omega(i) * omega(j) * omega(n-i-j) == 1], where omega(n) is the number of distinct prime factors of n and [==] is the Iverson bracket. - Wesley Ivan Hurt, Apr 25 2019