A307740 Numbers k such that k divides lcm(tau(k), sigma(k)).
1, 2, 6, 12, 24, 28, 40, 84, 120, 252, 360, 496, 672, 2480, 3276, 4680, 7440, 8128, 30240, 32760, 56896, 293760, 435708, 523776, 997920, 2178540, 2618880, 8910720, 23569920, 33550336, 45532800, 64995840, 102136320, 142990848, 275890944, 436154368, 459818240
Offset: 1
Keywords
Examples
6 is in the sequence because lcm(tau(6), sigma(6)) / 6 = lcm(4, 12) / 6 = 12 / 6 = 2.
Programs
-
Magma
[n: n in [1..1000000] | LCM(SumOfDivisors(n), NumberOfDivisors(n)) mod n eq 0]
-
Mathematica
aQ[n_]:=Divisible[LCM@@(DivisorSigma[#,n]&/@{0,1}),n]; Select[Range[10000], aQ] (* Amiram Eldar, May 07 2019 *)
-
PARI
isok(n) = !(lcm(numdiv(n), sigma(n)) % n); \\ Michel Marcus, Apr 26 2019
Extensions
More terms from Amiram Eldar, May 07 2019
Comments