cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307743 a(n) = Sum_{k=1..n} A307742(k).

Original entry on oeis.org

0, 1, 3, 4, 7, 7, 11, 12, 14, 14, 19, 19, 24, 24, 24, 25, 30, 30, 36, 36, 36, 36, 43, 43, 46, 46, 48, 48, 55, 55, 62, 63, 63, 63, 63, 63, 70, 70, 70, 70, 77, 77, 85, 85, 85, 85, 94, 94, 98, 98, 98, 98, 106, 106, 106, 106, 106, 106, 115, 115, 123, 123, 123, 124
Offset: 1

Views

Author

I. V. Serov, Apr 26 2019

Keywords

Comments

Quasi-logarithmic analog of the summatory von Mangoldt function, i.e., of the second Chebyshev function.
Conjecture: There is a constant c such that abs(a(n) - 2*n*(c+1)/c) = O(sqrt(n)).

Crossrefs

Programs

  • Mathematica
    qLog[n_] := qLog[n] = Module[{p, e}, If[n == 1, 0, Sum[{p, e} = pe; (1 + qLog[p - 1]) e, {pe, FactorInteger[n]}]]];
    f[n_] := qLog[Exp[MangoldtLambda[n]]];
    a[n_] := Sum[f[k], {k, 1, n}];
    Array[a, 64] (* Jean-François Alcover, May 07 2019 *)
  • PARI
    mang(n) = ispower(n, , &n); if(isprime(n), n, 1); \\ A014963
    ql(n) = if (n==1, 0, if(isprime(n), 1+ql(n-1), sumdiv(n, p, if(isprime(p), ql(p)*valuation(n, p))))); \\ A064097
    f(n) = ql(mang(n)); \\ A307742
    a(n) = sum(k=1, n, f(k)); \\ Michel Marcus, Apr 27 2019