A307755 Exponential convolution of partition numbers (A000041) with themselves.
1, 2, 6, 18, 58, 184, 586, 1822, 5618, 16980, 50892, 150064, 439210, 1268924, 3640342, 10337596, 29160638, 81570368, 226795202, 626070664, 1718783084, 4689582366, 12730998988, 34373603158, 92385339242, 247099560046, 658137847408, 1745322097886, 4610549234836, 12131656526628
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..3000
Programs
-
Maple
a:= n-> (p-> add(binomial(n, j)*p(j)*p(n-j), j=0..n))(combinat[numbpart]): seq(a(n), n=0..30); # Alois P. Heinz, Apr 26 2019
-
Mathematica
nmax = 29; CoefficientList[Series[Sum[PartitionsP[k] x^k/k!, {k, 0, nmax}]^2, {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[Binomial[n, k] PartitionsP[k] PartitionsP[n - k], {k, 0, n}], {n, 0, 29}]
Formula
E.g.f.: (Sum_{k>=0} A000041(k)*x^k/k!)^2.
a(n) ~ exp(2*Pi*sqrt(n/3)) * 2^(n-2) / (3*n^2). - Vaclav Kotesovec, May 06 2019