A307783 The permanent of an n X n symmetric Toeplitz matrix M(n) whose first row consists of n, n-1, ..., 1.
1, 5, 62, 1472, 57228, 3300052, 264163120, 28004426240, 3796084024832, 640290996560896, 131495036625989504, 32300689159458652160, 9350873610168606862080, 3150550820854335942423808, 1222211647879605626853439488, 540858935979668390014623285248, 270804098518125729769134021574656
Offset: 1
Keywords
Examples
For n = 1 the matrix M(1) is 1 with permanent a(1) = 1. For n = 2 the matrix M(2) is 2, 1 1, 2 with permanent a(2) = 5. For n = 3 the matrix M(3) is 3, 2, 1 2, 3, 2 1, 2, 3 with permanent a(3) = 62.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..35
- Wikipedia, Toeplitz Matrix
Programs
-
Maple
f:= proc(n) uses LinearAlgebra; Permanent(ToeplitzMatrix([i, i=n..1, -1)])) end proc: map(f, [$1..17]);
-
Mathematica
b[i_]:=i; a[n_]:=Permanent[ToeplitzMatrix[Reverse[Array[b, n]], Reverse[Array[b, n ]]]]; Array[a, 17]
-
PARI
{a(n) = matpermanent(matrix(n, n, i, j, n + 1 - max(i - j + 1, j - i + 1)))} for(n=1, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Apr 29 2019
Comments