cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307787 Number of valid hook configurations of 132-avoiding permutations of [n].

Original entry on oeis.org

1, 1, 1, 2, 5, 14, 43, 140, 477, 1683, 6106, 22664, 85735, 329572, 1284440, 5065828, 20188877, 81201801, 329281059, 1345059602, 5530600618, 22876354484, 95137126194, 397610249052, 1669285639455, 7037395810149, 29782584966376
Offset: 0

Views

Author

Colin Defant, Apr 28 2019

Keywords

Comments

Also the number of valid hook configurations of 231-avoiding permutations of [n].
For n > 0, a(n) is the number of intervals in the Motzkin-Tamari poset introduced by Fang.

Crossrefs

Programs

  • Mathematica
    m = 30; A[_] = 0;
    Do[A[x_] = (-x^4 A[x]^5 - 4x^3 A[x]^4 + x^2 (-8x^2 + 9x - 6) A[x]^3 + x (14x^2 + 19x - 4) A[x]^2 - (x + 1)^2 (8x - 1))/(16x^4 + 28x^3 - 11x + 1) + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Sep 28 2019 *)

Formula

O.g.f. A(x) satisfies (-1 + 6 x + 15 x^2 + 8 x^3) + (1 - 11 x + 28 x^3 + 16 x^4)*A(x) + (4 x - 19 x^2 - 14 x^3)*A(x)^2 + (6 x^2 - 9 x^3 + 8 x^4)*A(x)^3 + 4 x^3*A(x)^4 + x^4*A(x)^5 = 0.
a(n) ~ (b*r^n)/((Pi*n^5)^(1/2)), where b = 0.805810... is the unique positive real root of 41472*x^6 - 34749*x^4 + 5472*x^2 - 256 and r = 4.658905... is the unique real root of 256*x^3 - 645*x^2 - 2112*x - 2048.
D-finite with recurrence -40*(148331*n-97009)*(4*n+3)*(2*n+3)*(4*n+5)*(n+2) *a(n) +(416275187*n^5 +1198175440*n^4 +714804925*n^3 -286654300*n^2 -249009732*n -17183760)*a(n-1) +60*(28713647*n^5 -13727276*n^4 -42761251*n^3 +18500340*n^2 +16274828*n -6917680)*a(n-2) +128*(n-2)*(2*n-3) *(7934261*n^3 -428899*n^2 -4370812*n -1585650)*a(n-3) +2048*(2*n-5)*(60637*n +16808)*(n-2)*(n-3)*(2*n-3)*a(n-4)=0. - R. J. Mathar, Jan 25 2023