A307796 Number T(n,k) of binary words of length n such that k is the difference of numbers of occurrences of subword 101 and subword 010; triangle T(n,k), n>=0, -floor(n/3)<=k<=floor(n/3), read by rows.
1, 2, 4, 1, 6, 1, 2, 12, 2, 6, 20, 6, 1, 12, 38, 12, 1, 3, 28, 66, 28, 3, 10, 56, 124, 56, 10, 1, 24, 119, 224, 119, 24, 1, 4, 60, 236, 424, 236, 60, 4, 15, 134, 481, 788, 481, 134, 15, 1, 42, 304, 950, 1502, 950, 304, 42, 1, 5, 114, 656, 1902, 2838, 1902, 656, 114, 5
Offset: 0
Examples
T(8,2) = 10: 01101101, 10101101, 10110101, 10110110, 10110111, 10111011, 10111101, 11011011, 11011101, 11101101. T(8,-2) = 10: 00010010, 00100010, 00100100, 01000010, 01000100, 01001000, 01001001, 01001010, 01010010, 10010010. T(9,3) = 1: 101101101. T(9,-3) = 1: 010010010. Triangle T(n,k) begins: : 1 ; : 2 ; : 4 ; : 1, 6, 1 ; : 2, 12, 2 ; : 6, 20, 6 ; : 1, 12, 38, 12, 1 ; : 3, 28, 66, 28, 3 ; : 10, 56, 124, 56, 10 ; : 1, 24, 119, 224, 119, 24, 1 ; : 4, 60, 236, 424, 236, 60, 4 ; : 15, 134, 481, 788, 481, 134, 15 ; : 1, 42, 304, 950, 1502, 950, 304, 42, 1 ;
Links
- Alois P. Heinz, Rows n = 0..250, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, t, h) option remember; `if`(n=0, 1, expand( `if`(h=3, 1/x, 1)*b(n-1, [1, 3, 1][t], 2)+ `if`(t=3, x, 1)*b(n-1, 2, [1, 3, 1][h]))) end: T:= n-> (p-> seq(coeff(p, x, i), i=-iquo(n, 3)..iquo(n, 3)))(b(n, 1$2)): seq(T(n), n=0..15);
-
Mathematica
b[n_, t_, h_] := b[n, t, h] = If[n == 0, 1, Expand[If[h == 3, 1/x, 1]* b[n-1, {1, 3, 1}[[t]], 2] + If[t == 3, x, 1]*b[n-1, 2, {1, 3, 1}[[h]]]]]; T[n_] := Table[Coefficient[#, x, i], {i, -Quotient[n, 3], Quotient[n, 3]}]& @ b[n, 1, 1]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 08 2019, after Alois P. Heinz *)
Formula
T(n,k) = T(n,-k).
Sum_{k = -floor(n/3)..floor(n/3)} T(n,k) * k^2/2 = A057711(n-2) for n > 1.