cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307816 a(1) = 1; a(n) = Sum_{k=1..n-1} a(n-k) * Sum_{d|k} a(d)*a(k/d).

Original entry on oeis.org

1, 1, 3, 11, 46, 201, 928, 4399, 21431, 106399, 536896, 2744532, 14185314, 73999955, 389131156, 2060478226, 10976863244, 58792036053, 316397505099, 1710037259744, 9277953713444, 50514377326158, 275903656802218, 1511334791637679, 8300811367229306, 45703063861360901
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Sum[a[n - k] Sum[a[d] a[k/d], {d, Divisors[k]}], {k, 1, n - 1}]; a[1] = 1; Table[a[n], {n, 1, 26}]
    a[n_] := a[n] = SeriesCoefficient[x + Sum[a[k] x^k, {k, 1, n - 1}]  Sum[Sum[a[i] a[j] x^(i j), {j, 1, n - 1}], {i, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 1, 26}]
  • PARI
    lista(nn) = { my(va=vector(nn)); va[1] = 1; for (n=2, nn, va[n] = sum(k=1, n-1, va[n-k] * sumdiv(k, d, va[d]*va[k/d]))); va;} \\ Michel Marcus, Apr 30 2019

Formula

G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x + (Sum_{n>=1} a(n)*x^n) * (Sum_{i>=1} Sum_{j>=1} a(i)*a(j)*x^(i*j)).