cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307828 Number of integer-sided triangles with perimeter n whose smallest side-length divides n.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 4, 3, 1, 3, 1, 5, 4, 1, 1, 8, 4, 1, 4, 6, 1, 8, 1, 7, 4, 1, 8, 12, 1, 1, 4, 14, 1, 9, 1, 8, 12, 1, 1, 18, 5, 8, 4, 9, 1, 10, 10, 17, 4, 1, 1, 28, 1, 1, 13, 15, 11, 11, 1, 11, 4, 18, 1, 31, 1, 1, 15, 12, 11, 12, 1, 32
Offset: 1

Views

Author

Wesley Ivan Hurt, May 15 2019

Keywords

Crossrefs

Cf. A005044.

Programs

  • Mathematica
    Table[Sum[Sum[(1 - Ceiling[n/k] + Floor[n/k]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
  • PARI
    A307828(n) = sum(k=1, n\3, sum(i=k, (n-k)\2, sign(floor((i+k)/(n-i-k+1)) * (1 - ceil(n/k) + floor(n/k))))); \\ Antti Karttunen, Dec 05 2021

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1)) * (1 - ceiling(n/k) + floor(n/k))).