A307851 Prime numbers prime(k) with a zeroless decimal representation such that (product of decimal digits of prime(k)) / k is an integer.
2, 17, 73, 89, 2475989
Offset: 1
Examples
For k = 21, prime(21) = 73, product of decimal digits of prime(k) / k = 7 * 3 / 21 = 1 so prime(21) = 73 is in the sequence.
Links
- C. Pomerance and Ch. Spicer, Proof of the Sheldon Conjecture.
Programs
-
PARI
lista(nn) = {my(ip=0, d); forprime(p=2, nn, ip++; d = digits(p); if (vecmin(d) && !(frac(vecprod(d)/ip)), print1(p, ", ")););} \\ Michel Marcus, May 02 2019
-
Python
from math import prod from sympy import nextprime def aupton(terms): p, k, t = 2, 1, 0 while t < terms: strp = str(p) if '0' not in strp and prod(int(d) for d in strp)%k == 0: t += 1; print(p, end=", ") p, k = nextprime(p), k+1 aupton(5) # Michael S. Branicky, Feb 17 2021
Extensions
a(5) from Alois P. Heinz, May 01 2019