cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A307869 Decimal expansion of the asymptotic mean of d(k)/2^omega(k), where d(k) is the number of divisors of k (A000005) and omega(k) is the number of its distinct prime divisors (A001221).

Original entry on oeis.org

1, 4, 2, 7, 6, 5, 6, 5, 3, 5, 4, 2, 4, 8, 3, 9, 8, 8, 3, 1, 1, 7, 5, 2, 3, 9, 3, 9, 6, 8, 7, 3, 2, 7, 9, 0, 4, 0, 9, 3, 7, 3, 3, 6, 2, 8, 0, 7, 4, 4, 3, 9, 2, 7, 4, 2, 2, 4, 7, 4, 1, 4, 3, 6, 7, 3, 4, 4, 2, 9, 8, 8, 3, 4, 1, 1, 5, 3, 8, 9, 4, 0, 7, 4, 8, 3, 0, 3, 5, 2, 6, 0, 8, 3, 7, 4, 0, 5, 1, 7, 7, 9, 3, 2, 5
Offset: 1

Views

Author

Amiram Eldar, May 02 2019

Keywords

Comments

Also the asymptotic mean of ratio between the number of divisors and the number of unitary divisors of the integers.

Examples

			1.42765653542483988311752393968732790409373362807443...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{4, -6, 4}, {0, 4, 12}, m]; RealDigits[Exp[NSum[Indexed[c, n]*PrimeZetaP[n]/n/2^n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
  • PARI
    prodeulerrat(1 + 1/(2 * p * (p-1))) \\ Amiram Eldar, Mar 17 2021

Formula

Equals Product_{p prime} 1 + 1/(2 * p * (p-1)).
Equals (Pi^2/6) * Product_{p prime} 1 - 1/(2 * p^2) + 1/(2 * p^3).

Extensions

More terms from Vaclav Kotesovec, May 29 2020

A308043 Decimal expansion of the asymptotic mean of 2^omega(k)/d(k), where omega(k) is the number of distinct prime divisors of k (A001221) and d(k) is its number of divisors (A000005).

Original entry on oeis.org

8, 1, 9, 1, 9, 0, 9, 6, 4, 1, 4, 8, 9, 9, 1, 9, 0, 8, 1, 8, 0, 3, 6, 5, 6, 6, 0, 3, 8, 1, 3, 7, 3, 5, 8, 2, 7, 2, 2, 2, 6, 8, 8, 5, 2, 4, 7, 9, 7, 1, 8, 4, 9, 8, 5, 8, 2, 1, 4, 6, 6, 0, 3, 7, 6, 2, 1, 1, 7, 4, 3, 5, 0, 4, 7, 2, 2, 0, 4, 0, 2, 2, 0, 8, 7, 0, 7
Offset: 0

Views

Author

Amiram Eldar, May 10 2019

Keywords

Comments

Also the asymptotic mean of the ratio between the number of unitary divisors and the number of divisors of the integers.

Examples

			0.81919096414899190818036566038137358272226885247971...
		

Crossrefs

Cf. A000005, A001221, A034444, A307870 (mean of the inverse ratio).

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; f[p_] := (1 - 1/p)*(2*p*Log[p/(p - 1)] - 1); c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; RealDigits[f[2] * Exp[ NSum[ Indexed[c, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals Product_{p prime} (1-1/p)*(2*p*log(p/(p-1))-1).

A335832 Numbers k with record values of the ratio d(k)/id(k) between the number of divisors and the number of infinitary divisors.

Original entry on oeis.org

1, 4, 16, 144, 256, 1296, 2304, 20736, 518400, 1679616, 5308416, 12960000, 41990400, 132710400, 429981696, 635040000, 1049760000, 3317760000, 10749542400, 31116960000, 51438240000, 162570240000, 268738560000, 2520473760000, 7965941760000, 13168189440000, 167961600000000
Offset: 1

Views

Author

Amiram Eldar, Jun 25 2020

Keywords

Comments

This sequence is infinite since the ratio d(k)/id(k) is unbounded. For example, for k = 2^(2^m) we have d(k)/id(k) = (2^m+1)/2.
The corresponding record values are 1, 1.5, 2.5, 3.75, 4.5, 6.25, 6.75, 11.25, 16.875, 20.25, ...

Crossrefs

Subsequence of A025487.

Programs

  • Mathematica
    id[1] = 1; id[n_] := Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[All, 2]]]; f[1] = 1; f[n_] := DivisorSigma[0, n]/id[n]; seq = {}; fm = 0; Do[f1 = f[n]; If[f1 > fm, fm = f1; AppendTo[seq, n]], {n, 1, 10^6}]; seq

Formula

The ratios d(k)/id(k) for k = 1, 2, 3 and 4 are 1, 1, 1 and 3/2. The record values occur at 1 and 4.

A361937 Numbers k with record values of the ratio A000005(k)/A246600(k) between the total number of divisors of k and the number of divisors d of k such that the bitwise OR of k and d is equal to k.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 336, 420, 840, 1680, 3360, 6720, 7560, 15120, 30240, 60480, 95760, 120960, 176400, 191520, 257040, 352800, 383040, 514080, 1028160, 1681680, 2056320, 2998800, 3112200, 5525520, 5997600, 6224400, 8353800, 12448800, 16216200, 24897600
Offset: 1

Views

Author

Amiram Eldar, Mar 31 2023

Keywords

Comments

This sequence is infinite since the ratio A000005(k)/A246600(k) is unbounded. For example, if k = 2^m then A000005(k)/A246600(k) = m+1.
All the terms except for 1 are in A355670.

Examples

			The ratios A000005(k)/A246600(k) for k = 1, 2, 3 and 4 are 1, 2, 1 and 3. The record values, 1, 2 and 3, occur at 1, 2 and 4, the first 3 terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    r[n_] := DivisorSigma[0,n]/DivisorSum[n, Boole[BitOr[#, n] == n] &];
    seq[kmax_] := Module[{rm = 0, k = 1, s = {}, r1}, Do[r1 = r[k]; If[r1 > rm, rm = r1; AppendTo[s, k]], {k, 1 , kmax}]; s]; seq[10^6]
  • PARI
    r(n) = numdiv(n)/sumdiv(n, d, bitor(d, n) == n);
    lista(kmax) = {my(rm = 0, r1); for(k = 1, kmax, r1 = r(k); if(r1 > rm, rm = r1; print1(k, ", "))); }

A361807 Numbers k with record values of the ratio A000005(k)/A049419(k) between the number of divisors of k and the number of exponential divisors of k.

Original entry on oeis.org

1, 2, 6, 30, 210, 2310, 30030, 480480, 510510, 8168160, 9699690, 155195040, 223092870, 3569485920, 6469693230, 103515091680, 200560490130, 3208967842080, 7420738134810, 118731810156960, 304250263527210, 4868004216435360, 13082761331670030, 209324181306720480
Offset: 1

Views

Author

Amiram Eldar, Mar 25 2023

Keywords

Comments

This sequence is infinite since the ratio A000005(k)/A049419(k) is unbounded. For example, for k = A002110(m) we have A000005(k)/A049419(k) = 2^m.
The corresponding record values are 1, 2, 4, 8, 16, 32, 64, 96, 128, ...

Examples

			The ratios A000005(k)/A049419(k) for k = 1, 2, 3, 4, 5 and 6 are 1, 2, 2, 3/2, 2 and 4. The record values, 1, 2 and 4, occur at 1, 2 and 6, the first 3 terms of this sequence.
		

Crossrefs

Subsequence of A025487.
Similar sequences: A307870, A335832.

Programs

  • Mathematica
    f[p_, e_] := (e+1)/DivisorSigma[0, e]; r[1] = 1; r[n_] := Times @@ f @@@ FactorInteger[n]; seq[kmax_] := Module[{rm = 0, s = {}, r1}, Do[r1 = r[k]; If[r1 > rm, rm = r1; AppendTo[s, k]], {k, 1 , kmax}]; s]; seq[10^6]
  • PARI
    r(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 2]+1)/numdiv(f[i, 2])); }
    lista(kmax) = {my(rm = 0, r1); for(k = 1, kmax, r1 = r(k); if(r1 > rm, rm = r1; print1(k, ", "))); }
Showing 1-5 of 5 results.