cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307988 T(n, k) the number of A-polynomials in F_2^k[T] of degree n, array read by descending antidiagonals.

Original entry on oeis.org

1, 2, 1, 1, 2, 0, 4, 7, 4, 1, 11, 36, 42, 18, 2, 14, 121, 344, 259, 48, 2, 29, 518, 2750, 4068, 1652, 172, 4, 72, 2059, 21924, 65461, 52368, 10962, 588, 9, 127, 8136, 174986, 1048950, 1677940, 699288, 74998, 2034, 14, 242, 32893, 1398576, 16778791, 53686584, 44738782, 9587880, 524475, 7308, 24
Offset: 1

Views

Author

Michel Marcus, May 22 2019

Keywords

Examples

			Array begins:
1   2     1       4         11           14             29
1   2     7      36        121          518           2059
0   4    42     344       2750        21924         174986
1  18   259    4068      65461      1048950       16778791
2  48  1652   52368    1677940     53686584     1717985404
2 172 10962  699288   44738782   2863291620   183251786538
4 588 74998 9587880 1227132434 157072960476 20105353937606
		

Crossrefs

Cf. A175390 (1st column).
Cf. A002249 or A077021 (sequences related to alpha).

Programs

  • PARI
    f(n) = 2 * real(((-1 + quadgen(-28)) / 2)^n);
    a(n, r) = {my(k = valuation(n, 2), m = n/2^k, q = 2^r); sumdiv(m, d, moebius(m/d)*(q^(2^k*d)+1-f(r*2^k*d)))/(4*n);}

Formula

T(n, k) = Sum_{d|n} moebius(m/d)*q^(2^k*d) + 1 - alpha^(r*2^k*d) - alphabar^(r*2^k*d), where n = 2^k*m, m odd, alpha = (-1+sqrt(-7))/2 and alphabar = (-1-sqrt(-7))/2 is the conjugate of alpha.