cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307997 a(n) is the sum of A023896(k) over the totatives of n.

Original entry on oeis.org

1, 1, 2, 4, 9, 11, 25, 35, 53, 52, 109, 87, 188, 174, 218, 255, 432, 301, 622, 492, 636, 633, 1109, 725, 1288, 1113, 1468, 1287, 2275, 1121, 2801, 2305, 2598, 2499, 3227, 2266, 4760, 3550, 4229, 3449, 6556, 3311, 7628, 5527, 5846, 6199, 10017, 5736, 10453, 7282, 9654, 8832, 14451, 8143, 13060
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, May 09 2019

Keywords

Comments

a(n) <= A213544(n-1) for n >= 2, with equality if and only if n is prime. - Robert Israel, May 10 2019

Examples

			a(6) = 11 because the totatives of 6, i.e. the numbers from 1 to 6 that are coprime to 6, are 1 and 5, A023896(1) = 1 and A023896(5) = 1+2+3+4=10, and 1+10=11.
		

Crossrefs

Programs

  • Maple
    A023896:= proc(n) option remember; convert(select(t -> igcd(t,n)=1, [$1..n]),`+`) end proc:
    f:= n -> convert(map(A023896, select(t -> igcd(t,n)=1, [$1..n])),`+`):
    map(f, [$1..100]);
  • Mathematica
    A023896[n_] := If[n == 1, 1, (n/2) EulerPhi[n]];
    a[n_] := Sum[Boole[GCD[n, k] == 1] A023896[k], {k, 1, n}];
    Array[a, 100] (* Jean-François Alcover, Jul 31 2020 *)
  • PARI
    s(n) = if(n<2, n>0, n*eulerphi(n)/2); \\ A023896
    a(n) = sum(k=1, n, if (gcd(n,k)==1, s(k))); \\ Michel Marcus, May 10 2019

Formula

a(n) = Sum_{1<=k<=n; gcd(k,n)=1} A023896(k).
a(n) = Sum_{k=1..n} k*A143620(n,k).