cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308067 Number of integer-sided triangles with perimeter n whose longest side length is odd.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 2, 1, 1, 0, 3, 2, 2, 1, 5, 3, 3, 2, 7, 5, 5, 3, 9, 7, 7, 5, 12, 9, 9, 7, 15, 12, 12, 9, 18, 15, 15, 12, 22, 18, 18, 15, 26, 22, 22, 18, 30, 26, 26, 22, 35, 30, 30, 26, 40, 35, 35, 30, 45, 40, 40, 35, 51, 45, 45, 40, 57, 51, 51, 45, 63, 57
Offset: 1

Views

Author

Wesley Ivan Hurt, May 10 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Mod[n - i - k, 2]*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
  • PARI
    a(n) = sum(k=1, n\3, sum(i=k, (n-k)\2, sign((i+k)\(n-i-k+1))*((n-i-k) % 2))); \\ Michel Marcus, May 15 2019

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * ((n-i-k) mod 2).
Conjectures from Colin Barker, May 11 2019: (Start)
G.f.: x^3*(1 - x + x^2 - x^3 + x^4) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x^2)^2*(1 + x + x^2)).
a(n) = a(n-1) - a(n-2) + a(n-3) + a(n-4) - a(n-5) + 2*a(n-6) - 2*a(n-7) + a(n-8) - a(n-9) - a(n-10) + a(n-11) - a(n-12) + a(n-13) for n>13.
(End)
Conjectures from Marc Bofill Janer, May 15 2019: (Start)
a(4*n) = a(4*n+1).
a(4*n) < a(4*n-1).
a(4*n) = A001840(n-1) = A130518(n+1) = A062781(n+2).
a(4*n-1) = a(4*n+4) = a(4*n+5).
a(4*n-1) = A001840(n) = A130518(n+2) = A062781(n+3).
a(4*n+2) = a(4*n-4) = a(4*n-3).
a(4*n+2) = A001840(n-2) for n>=2.
a(4*n+2) = A130518(n) = A062781(n+1).
(End)