A308067 Number of integer-sided triangles with perimeter n whose longest side length is odd.
0, 0, 1, 0, 0, 0, 2, 1, 1, 0, 3, 2, 2, 1, 5, 3, 3, 2, 7, 5, 5, 3, 9, 7, 7, 5, 12, 9, 9, 7, 15, 12, 12, 9, 18, 15, 15, 12, 22, 18, 18, 15, 26, 22, 22, 18, 30, 26, 26, 22, 35, 30, 30, 26, 40, 35, 35, 30, 45, 40, 40, 35, 51, 45, 45, 40, 57, 51, 51, 45, 63, 57
Offset: 1
Keywords
Links
- Wikipedia, Integer Triangle
Programs
-
Mathematica
Table[Sum[Sum[Mod[n - i - k, 2]*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
-
PARI
a(n) = sum(k=1, n\3, sum(i=k, (n-k)\2, sign((i+k)\(n-i-k+1))*((n-i-k) % 2))); \\ Michel Marcus, May 15 2019
Formula
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * ((n-i-k) mod 2).
Conjectures from Colin Barker, May 11 2019: (Start)
G.f.: x^3*(1 - x + x^2 - x^3 + x^4) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x^2)^2*(1 + x + x^2)).
a(n) = a(n-1) - a(n-2) + a(n-3) + a(n-4) - a(n-5) + 2*a(n-6) - 2*a(n-7) + a(n-8) - a(n-9) - a(n-10) + a(n-11) - a(n-12) + a(n-13) for n>13.
(End)
Conjectures from Marc Bofill Janer, May 15 2019: (Start)
a(4*n) = a(4*n+1).
a(4*n) < a(4*n-1).
a(4*n-1) = a(4*n+4) = a(4*n+5).
a(4*n+2) = a(4*n-4) = a(4*n-3).
a(4*n+2) = A001840(n-2) for n>=2.
(End)