cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308076 G.f. A(x) satisfies: A(x) = x + 2*A(x^2) + 4*A(x^3) + 8*A(x^4) + ... + 2^(k-1)*A(x^k) + ...

Original entry on oeis.org

1, 2, 4, 12, 16, 48, 64, 168, 272, 576, 1024, 2288, 4096, 8448, 16512, 33456, 65536, 132448, 262144, 526784, 1049088, 2101248, 4194304, 8399232, 16777472, 33570816, 67110976, 134252288, 268435456, 536942336, 1073741824, 2147618976, 4294975488, 8590196736, 17179871232
Offset: 1

Views

Author

Ilya Gutkovskiy, May 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 35; A[] = 0; Do[A[x] = x + Sum[2^(k - 1) A[x^k], {k, 2, terms}] + O[x]^(terms + 1) //Normal, terms + 1]; Rest[CoefficientList[A[x], x]]
    a[n_] := If[n == 1, n, Sum[If[d < n, 2^(n/d - 1) a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 35}]

Formula

a(1) = 1; a(n) = Sum_{d|n, d
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Oct 16 2019