cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A328424 a(1) = 1; a(n) = Sum_{d|n, d < n} p(n/d) * a(d), where p = A000041 (partition numbers).

Original entry on oeis.org

1, 2, 3, 9, 7, 23, 15, 50, 39, 70, 56, 187, 101, 195, 218, 420, 297, 625, 490, 949, 882, 1226, 1255, 2533, 2007, 2840, 3217, 4588, 4565, 6966, 6842, 10099, 10479, 13498, 15093, 21507, 21637, 27975, 31791, 41722, 44583, 58022, 63261, 80415, 90799, 110578, 124754
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, n, Sum[If[d < n, PartitionsP[n/d] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 47}]
    terms = 47; A[] = 0; Do[A[x] = x + Sum[PartitionsP[k] A[x^k], {k, 2, terms}] + O[x]^(terms + 1) // Normal,terms + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} p(k) * A(x^k).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n). - Vaclav Kotesovec, Oct 16 2019

A351405 a(1) = 1; a(n+1) = Sum_{d|n} 2^(n/d - 1) * a(d).

Original entry on oeis.org

1, 1, 3, 7, 17, 33, 75, 139, 289, 557, 1119, 2143, 4341, 8437, 16843, 33343, 66573, 132109, 264243, 526387, 1052549, 2101617, 4202031, 8396335, 16792705, 33570193, 67137403, 134248191, 268492033, 536927489, 1073853307, 2147595131, 4295180241, 8590155085
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 10 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          add(2^((n-1)/d-1)*a(d), d=numtheory[divisors](n-1)))
        end:
    seq(a(n), n=1..34);  # Alois P. Heinz, Feb 10 2022
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[2^((n - 1)/d - 1) a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 34}]
    nmax = 34; A[] = 0; Do[A[x] = x (1 + Sum[2^(k - 1) A[x^k], {k, 1, nmax}]) + O[x]^(nmax + 1) //Normal, nmax + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x * ( 1 + A(x) + 2 * A(x^2) + 4 * A(x^3) + ... + 2^(k-1) * A(x^k) + ... ).
G.f.: x * ( 1 + Sum_{n>=1} a(n) * x^n / (1 - 2 * x^n) ).
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Feb 18 2022

A329803 a(1) = 1; a(n) = Sum_{d|n, d < n} q(n/d) * a(d), where q() = A000009.

Original entry on oeis.org

1, 1, 2, 3, 3, 8, 5, 11, 12, 16, 12, 37, 18, 32, 39, 55, 38, 90, 54, 105, 96, 113, 104, 236, 151, 201, 232, 301, 256, 450, 340, 517, 496, 588, 615, 988, 760, 972, 1054, 1395, 1260, 1766, 1610, 2078, 2240, 2512, 2590, 3653, 3289, 4029, 4249, 5038, 5120, 6526
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, n, Sum[If[d < n, PartitionsQ[n/d] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 54}]
    nmax = 54; A[] = 0; Do[A[x] = x + Sum[PartitionsQ[k] A[x^k], {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} q(k) * A(x^k).
Showing 1-3 of 3 results.