A328424 a(1) = 1; a(n) = Sum_{d|n, d < n} p(n/d) * a(d), where p = A000041 (partition numbers).
1, 2, 3, 9, 7, 23, 15, 50, 39, 70, 56, 187, 101, 195, 218, 420, 297, 625, 490, 949, 882, 1226, 1255, 2533, 2007, 2840, 3217, 4588, 4565, 6966, 6842, 10099, 10479, 13498, 15093, 21507, 21637, 27975, 31791, 41722, 44583, 58022, 63261, 80415, 90799, 110578, 124754
Offset: 1
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := If[n == 1, n, Sum[If[d < n, PartitionsP[n/d] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 47}] terms = 47; A[] = 0; Do[A[x] = x + Sum[PartitionsP[k] A[x^k], {k, 2, terms}] + O[x]^(terms + 1) // Normal,terms + 1]; CoefficientList[A[x], x] // Rest
Formula
G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} p(k) * A(x^k).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n). - Vaclav Kotesovec, Oct 16 2019