A308091 Sum of the areas of the integer-sided triangles with perimeter n and integer area.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 12, 0, 12, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 30, 0, 72, 0, 0, 0, 198, 0, 0, 0, 60, 0, 126, 0, 66, 0, 0, 0, 288, 0, 180, 0, 0, 0, 360, 0, 84, 0, 0, 0, 330, 0, 0, 0, 648, 0, 132, 0, 204, 0, 420, 0, 876, 0, 0, 0, 114
Offset: 1
Keywords
Links
- Wikipedia, Integer Triangle
Crossrefs
Cf. A051516.
Programs
-
Mathematica
Table[Sum[Sum[Sqrt[(n/2) (n/2 - i) (n/2 - k) (i + k - n/2)] (1 - Ceiling[Sqrt[(n/2) (n/2 - i) (n/2 - k) (i + k - n/2)]] + Floor[Sqrt[(n/2) (n/2 - i) (n/2 - k) (i + k - n/2)]])*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
Formula
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} m * (1 - ceiling(m) + floor(m)) * sign(floor((i+k)/(n-i-k+1))), where m = sqrt((n/2)*(n/2-i)*(n/2-k)*(i+k-n/2)).