cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308091 Sum of the areas of the integer-sided triangles with perimeter n and integer area.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 12, 0, 12, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 30, 0, 72, 0, 0, 0, 198, 0, 0, 0, 60, 0, 126, 0, 66, 0, 0, 0, 288, 0, 180, 0, 0, 0, 360, 0, 84, 0, 0, 0, 330, 0, 0, 0, 648, 0, 132, 0, 204, 0, 420, 0, 876, 0, 0, 0, 114
Offset: 1

Views

Author

Wesley Ivan Hurt, May 12 2019

Keywords

Crossrefs

Cf. A051516.

Programs

  • Mathematica
    Table[Sum[Sum[Sqrt[(n/2) (n/2 - i) (n/2 - k) (i + k - n/2)] (1 - Ceiling[Sqrt[(n/2) (n/2 - i) (n/2 - k) (i + k - n/2)]] + Floor[Sqrt[(n/2) (n/2 - i) (n/2 - k) (i + k - n/2)]])*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} m * (1 - ceiling(m) + floor(m)) * sign(floor((i+k)/(n-i-k+1))), where m = sqrt((n/2)*(n/2-i)*(n/2-k)*(i+k-n/2)).