cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308105 Numbers m such that m is greater than the sum of the k-th powers of its digits, where k is the number of digits of m.

Original entry on oeis.org

10, 11, 12, 13, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 35, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 70, 71, 72, 73, 74, 75, 80, 81, 82, 83, 84, 90, 91, 92, 93, 100, 101, 102, 103, 104, 110, 111, 112, 113, 114, 120, 121, 122, 123, 124, 130, 131, 132, 133, 134
Offset: 1

Views

Author

Bernard Schott, May 13 2019

Keywords

Comments

These integers are called "nombres résistants" on the French site Diophante.
There exists a smallest number M_0 such that every number >= M_0 is a term of this sequence. This integer has 60 digits: M_0 = 102 * 10^57. So 102 * 10^57 - 1 is not "résistant" (proof in the link).

Examples

			34 - (3^2 + 4^2) = 9 so 34 is a term.
126 - (1^3 + 2^3 + 6^3) = -99 and 126 is not a term.
		

Crossrefs

Programs

  • Magma
    sol:=[];v:=[];digit:=[]; m:=1;
    for u in [1..150] do
            digit:=Intseq(u);
                 for i in [1..#digit] do v[i]:=digit[i]^#digit; end for;
                 if u-&+v gt 0 then sol[m]:=u; m:=m+1; end if;
    end for;
    sol; // Marius A. Burtea, May 13 2019
    
  • Maple
    filter:= proc(n) local L,m,t;
      L:= convert(n,base,10);
      m:= nops(L);
      n > add(t^m,t=L)
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Jun 21 2019
  • Mathematica
    Select[Range[140], # - Total[IntegerDigits[#]^IntegerLength[#]] > 0 &] (* Michael De Vlieger, Jun 09 2019 *)
  • PARI
    isok(n) = { my(d=digits(n), nb=#d); n > sum(k=1, #d, d[k]^nb);} \\ Michel Marcus, May 19 2019

Formula

Numbers m such that m - A101337(m) > 0.