cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308112 Total number of nodes summed over all lattice paths from (0,0) to (n,n) that consist of steps (h,v) with min(h,v) > 0 and gcd(h,v) = 1.

Original entry on oeis.org

1, 2, 3, 10, 47, 186, 703, 2640, 9979, 37980, 144713, 550666, 2093215, 7951524, 30186737, 114522342, 434172249, 1644889496, 6227677911, 23563691408, 89104756279, 336752825864, 1271998719875, 4802187032270, 18120902471019, 68347041380528, 257673014416775
Offset: 0

Views

Author

Alois P. Heinz, May 13 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y=0, [1$2],
          (p-> p +[0, p[1]])(add(add(`if`(igcd(h, v)=1,
           b(sort([x-h, y-v])[]), 0), v=1..y), h=1..x)))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..30);
  • Mathematica
    f[p_List] := p + {0, p[[1]]}; f[0] = 0;
    b[{x_, y_}] := b[{x, y}] = If[y == 0, {1, 1},
         f[Sum[Sum[If[GCD[h, v] == 1,
         b[Sort[{x-h, y-v}]], {0, 0}], {v, 1, y}], {h, 1, x}]]];
    a[n_] := b[{n, n}][[2]];
    a /@ Range[0, 30] (* Jean-François Alcover, Apr 05 2021, after Alois P. Heinz *)

Formula

a(n) mod 2 = 1 - (n mod 2) = A059841(n).
a(n) ~ c * d^n * sqrt(n), where d = 3.7137893481485186502229788321701955452444... and c = 0.0685686817861124238901083560487601593693... - Vaclav Kotesovec, May 24 2019