cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A308140 Sum of the largest side lengths of all integer-sided triangles with squarefree side lengths and perimeter n.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 6, 3, 3, 0, 10, 5, 17, 12, 32, 20, 20, 13, 14, 7, 27, 30, 64, 43, 32, 21, 71, 48, 92, 92, 154, 112, 110, 85, 169, 123, 142, 94, 222, 154, 171, 101, 245, 169, 316, 250, 424, 321, 361, 263, 322, 219, 367, 337, 348, 260, 275, 242, 405, 310
Offset: 1

Views

Author

Wesley Ivan Hurt, May 14 2019

Keywords

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    SF:= select(numtheory:-issqrfree, [$1..N/2]):
    V:= Vector(N):
    for ia from 1 to nops(SF) do
        a:= SF[ia];
        if 2*a >= N then break fi;
        for ib from ia by -1 to 1 do
          b:= SF[ib];
          if 2*b <= a then break fi;
          cs:= select(c -> b+c > a, SF[1...ib]);
          P:= select(`<=`,map(c -> a+b+c, cs),N);
          V[P]:= V[P] +~ a;
    od od:
    convert(V,list); # Robert Israel, May 14 2019
  • Mathematica
    Table[Sum[Sum[(n - i - k)* MoebiusMu[i]^2*MoebiusMu[k]^2*MoebiusMu[n - k - i]^2 *Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
  • PARI
    a(n) = sum(k=1, n\3, sum(i=k, (n-k)\2, sign((i+k)\(n-i-k+1))* issquarefree(i)*issquarefree(k)*issquarefree(n-i-k)*(n-i-k))); \\ Michel Marcus, May 14 2019

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * mu(i)^2 * mu(k)^2 * mu(n-i-k)^2 * (n-i-k), where mu is the Möbius function (A008683).

A308143 Take all the integer-sided triangles with perimeter n and squarefree sides a, b, and c such that a <= b <= c. a(n) is the sum of all the b's.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 5, 3, 3, 0, 8, 5, 16, 11, 29, 18, 18, 12, 13, 7, 23, 23, 51, 35, 28, 20, 62, 44, 82, 79, 132, 98, 100, 75, 144, 108, 121, 80, 185, 131, 148, 87, 203, 145, 265, 200, 345, 264, 300, 214, 272, 187, 305, 274, 301, 216, 246, 210, 340, 258, 406
Offset: 1

Views

Author

Wesley Ivan Hurt, May 14 2019

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n)
      local a,b,t;
      t:= 0;
      for a from 1 to n/3 do
        if not a::squarefree then next fi;
        for b from max(a, ceil((n+1)/2-a)) to (n-a)/2 do
          if b::squarefree and (n-a-b)::squarefree then t:= t+b fi
      od od;
      t
    end proc:
    map(f, [$1..100]); # Robert Israel, May 09 2024
  • Mathematica
    Table[Sum[Sum[i* MoebiusMu[i]^2*MoebiusMu[k]^2*MoebiusMu[n - k - i]^2 *Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * mu(i)^2 * mu(k)^2 * mu(n-i-k)^2 * i, where mu is the Möbius function (A008683).

A308133 Sum of the smallest sides of all integer-sided triangles with squarefree sides and perimeter n.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 3, 2, 3, 0, 4, 2, 6, 5, 14, 10, 13, 11, 11, 6, 13, 13, 23, 18, 15, 11, 29, 20, 29, 39, 55, 46, 54, 44, 72, 57, 70, 54, 100, 75, 91, 64, 111, 82, 139, 102, 171, 135, 172, 123, 171, 114, 176, 145, 176, 140, 163, 128, 199, 152, 204, 207, 283
Offset: 1

Views

Author

Wesley Ivan Hurt, May 14 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[k*MoebiusMu[i]^2*MoebiusMu[k]^2*MoebiusMu[n - k - i]^2*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * mu(i)^2 * mu(k)^2 * mu(n-i-k)^2 * k, where mu is the Möbius function (A008683).
Showing 1-3 of 3 results.