A308137 Number of (undirected) Hamiltonian paths on the n-prism graph.
30, 72, 130, 228, 350, 528, 738, 1020, 1342, 1752, 2210, 2772, 3390, 4128, 4930, 5868, 6878, 8040, 9282, 10692, 12190, 13872, 15650, 17628, 19710, 22008, 24418, 27060, 29822, 32832, 35970, 39372, 42910, 46728, 50690, 54948, 59358, 64080, 68962, 74172, 79550
Offset: 3
Links
- Colin Barker, Table of n, a(n) for n = 3..1000
- Eric Weisstein's World of Mathematics, Hamiltonian Path
- Eric Weisstein's World of Mathematics, Prism Graph
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Crossrefs
Cf. A124350.
Programs
-
Mathematica
LinearRecurrence[{2,1,-4,1,2,-1},{30,72,130,228,350,528},50] (* Harvey P. Dale, Jun 20 2021 *)
-
PARI
Vec(2*x^3*(15 + 6*x - 22*x^2 + 8*x^3 + 11*x^4 - 6*x^5) / ((1 - x)^4*(1 + x)^2) + O(x^30)) \\ Colin Barker, Jul 19 2019
Formula
a(n) = A124350(n)/2.
From Colin Barker, Jul 19 2019: (Start)
G.f.: 2*x^3*(15 + 6*x - 22*x^2 + 8*x^3 + 11*x^4 - 6*x^5) / ((1 - x)^4*(1 + x)^2).
a(n) = n*(3 + (-1)^n + 2*n^2) / 2.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>8.
(End)
Extensions
More terms from Colin Barker, Jul 19 2019