cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308203 Array read by ascending antidiagonals: T(n,k) = number of non-isomorphic kC_n-snakes for n >= 3 and k >= 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 3, 6, 1, 1, 3, 6, 6, 10, 1, 1, 4, 6, 18, 10, 20, 1, 1, 4, 10, 18, 45, 20, 36, 1, 1, 5, 10, 40, 45, 135, 36, 72, 1, 1, 5, 15, 40, 136, 135, 378, 72, 136, 1, 1, 6, 15, 75, 136, 544, 378, 1134, 136, 272, 1
Offset: 3

Views

Author

Christian Barrientos, May 15 2019

Keywords

Comments

A kC_n-snake is a connected graph in which the k >= 2 blocks are isomorphic to the cycle C_n and the block-cutpoint graph is a path.

Examples

			T(n,2)=1 because there is only one way to connect two copies of C_n.
T(3,k)=1 because C_3 is isomorphic to K_3 and all the selections of 2 cutpoints, in each interior copy of C_3, are equivalent.
T(5,4)=3 there are only 3 non-equivalent strings of length 2 corresponding to the distances between consecutive cutpoints: 11, 12, and 2,2.
Table begins:
1    1    1     1      1       1        1         1          1           1            1
1    2    3     6     10      20       36        72        136         272          528
1    2    3     6     10      20       36        72        136         272          528
1    3    6    18     45     135      378      1134       3321        9963        29646
1    3    6    18     45     135      378      1134       3321        9963        29646
1    4   10    40    136     544     2080      8320      32896      131584       524800
1    4   10    40    136     544     2080      8320      32896      131584       524800
1    5   15    75    325    1625     7875     39375     195625      978125      4884375
1    5   15    75    325    1625     7875     39375     195625      978125      4884375
1    6   21   126    666    3996    23436    140616     840456     5042736     30236976
1    6   21   126    666    3996    23436    140616     840456     5042736     30236976
1    7   28   196   1225    8575    58996    412972    2883601    20185207    141246028
1    7   28   196   1225    8575    58996    412972    2883601    20185207    141246028
1    8   36   288   2080   16640   131328   1050624    8390656    67125248    536887296
1    8   36   288   2080   16640   131328   1050624    8390656    67125248    536887296
1    9   45   405   3321   29889   266085   2394765   21526641   193739769   1743421725
1    9   45   405   3321   29889   266085   2394765   21526641   193739769   1743421725
1   10   55   550   5050   50500   500500   5005000   50005000   500050000   5000050000
		

Formula

For n >= 3 and k >= 2, T(n,k) = (floor(n/2)^(k-2) + floor(n/2)^(floor(k-1)/2))/2.
For n even, T(n, 2)=1, if k is odd T(n,k)=(n/2)*T(n,k-1), if k is even T(n,k)=(n/2)*T(n,k-1)-((n-2)/4)*(n/2)^((k-2)/2).