cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308272 G.f. A(x) satisfies: A(x) = (1 + x) * A(x^2)*A(x^3)*A(x^5)* ... *A(x^prime(k))* ...

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 6, 7, 10, 13, 16, 22, 27, 33, 44, 53, 65, 84, 101, 124, 156, 187, 226, 280, 336, 403, 492, 587, 700, 850, 1008, 1195, 1435, 1693, 2004, 2390, 2808, 3303, 3910, 4584, 5372, 6328, 7387, 8619, 10106, 11757, 13675, 15961, 18508, 21464, 24948, 28845, 33345
Offset: 0

Views

Author

Ilya Gutkovskiy, May 17 2019

Keywords

Comments

Weigh transform of A008480.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; (l-> add(i, i=l)!/
          mul(i!, i=l))(map(i-> i[2], ifactors(n)[2]))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(g(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 17 2019
  • Mathematica
    terms = 53; A[] = 1; Do[A[x] = (1 + x) Product[A[x^Prime[k]], {k, 1, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A008480(k).