A308394 Numbers which can be written in the form m^k - m with m prime and k a positive integer.
0, 2, 6, 14, 20, 24, 30, 42, 62, 78, 110, 120, 126, 156, 240, 254, 272, 336, 342, 506, 510, 620, 726, 812, 930, 1022, 1320, 1332, 1640, 1806, 2046, 2162, 2184, 2394, 2756, 3120, 3422, 3660, 4094, 4422, 4896, 4970, 5256, 6162, 6558, 6806, 6840, 7832, 8190, 9312
Offset: 1
Examples
a(9) = 2^6 - 2 = 62. For the two terms known to have two representations we have a(3) = 6 = 2^3 - 2 = 3^2 - 3 and a(33)= 2184 = 3^7 - 3 = 13^3 - 13.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Michael Bennett, On some exponential equations of S. S. Pillai, Canad. J. Math. 53 (2001), 897-922.
- Dana Mackenzie, 2184: An Absurd (and Adsurd) Tale, Integers (Electronic Journal of Combinatorial Number Theory), 18 (2018), A33.
Crossrefs
Programs
-
Maple
N:= 10^6; # to get all terms <= N P:= select(isprime,[2,seq(i,i=3..floor((1+sqrt(1+4*N))/2),2)]): S:= {0,seq(seq(m^k-m,k=2..floor(log[m](N+m))),m=P)}: sort(convert(S,list)); # Robert Israel, Aug 11 2019
-
PARI
x=List([]); lim=10000; forprime(m=2, lim, for(k=1, 100, y=(m^k-m); if(y>lim, break, i=setsearch(x, y, 1); if(i>0, listinsert(x, y, i))))); for(i=1, #x, print(x[i]));
-
PARI
isok(n) = {forprime(p=2, oo, my(keepk = 0); for (k=1, oo, if ((x=p^k - p) == n, return(1)); if (x > n, keepk = k; break);); if (keepk == 2, break););} \\ Michel Marcus, Aug 06 2019
Comments