cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308394 Numbers which can be written in the form m^k - m with m prime and k a positive integer.

Original entry on oeis.org

0, 2, 6, 14, 20, 24, 30, 42, 62, 78, 110, 120, 126, 156, 240, 254, 272, 336, 342, 506, 510, 620, 726, 812, 930, 1022, 1320, 1332, 1640, 1806, 2046, 2162, 2184, 2394, 2756, 3120, 3422, 3660, 4094, 4422, 4896, 4970, 5256, 6162, 6558, 6806, 6840, 7832, 8190, 9312
Offset: 1

Views

Author

Craig J. Beisel, May 24 2019

Keywords

Comments

The only known terms which have two representations where m is prime are 6 and 2184. It is conjectured by Bennett these are the only terms with this property.

Examples

			a(9) = 2^6 - 2 = 62.
For the two terms known to have two representations we have a(3) = 6 = 2^3 - 2 = 3^2 - 3 and a(33)= 2184 = 3^7 - 3 = 13^3 - 13.
		

Crossrefs

Subsequences: A000918 (2^n - 2), A036689 (p^2 - p), A058809 (3^n - 3), A178671 (5^n - 5).

Programs

  • Maple
    N:= 10^6; # to get all terms <= N
    P:= select(isprime,[2,seq(i,i=3..floor((1+sqrt(1+4*N))/2),2)]):
    S:= {0,seq(seq(m^k-m,k=2..floor(log[m](N+m))),m=P)}:
    sort(convert(S,list)); # Robert Israel, Aug 11 2019
  • PARI
    x=List([]); lim=10000; forprime(m=2, lim, for(k=1, 100, y=(m^k-m); if(y>lim, break, i=setsearch(x, y, 1); if(i>0, listinsert(x, y, i))))); for(i=1, #x, print(x[i]));
    
  • PARI
    isok(n) = {forprime(p=2, oo, my(keepk = 0); for (k=1, oo, if ((x=p^k - p) == n, return(1)); if (x > n, keepk = k; break);); if (keepk == 2, break););} \\ Michel Marcus, Aug 06 2019