cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308435 Peak- and valleyless Motzkin meanders.

Original entry on oeis.org

1, 2, 4, 9, 20, 45, 102, 233, 535, 1234, 2857, 6636, 15456, 36085, 84424, 197883, 464585, 1092348, 2571770, 6062109, 14305022, 33789777, 79887365, 189031914, 447639473, 1060798484, 2515512091, 5968826698, 14171068794, 33662866431, 80005478832, 190237068767, 452548530595
Offset: 0

Views

Author

Andrei Asinowski, May 27 2019

Keywords

Comments

a(n) is the number of Motzkin meanders that avoid UD and DU. A Motzkin meander is a lattice paths that starts at (0,0), uses steps U=1, H=0, D=-1, and never goes below the x-axis.

Examples

			For n=3, the a(3)=9 such meanders are UUU, UUH, UHU, UHH, UHD, HUU, HUH, HHU, HHH.
		

Crossrefs

Cf. A004149.

Programs

  • Mathematica
    CoefficientList[Series[-(1+x-Sqrt[(1-x^4)/(1-2*x-x^2)])/(2*x^2), {x, 0, 40}], x] (* Vaclav Kotesovec, Jun 05 2019 *)
  • PARI
    my(t='t + O('t^40)); Vec(-(1+t-sqrt((1-t^4)/(1-2*t-t^2)))/(2*t^2)) \\ Michel Marcus, May 27 2019

Formula

G.f.: -(1+t-sqrt((1-t^4)/(1-2*t-t^2)))/(2*t^2).
D-finite with recurrence (n+2)*a(n) +(-2*n-3)*a(n-1) +(-n-1)*a(n-2) +(-n+4)*a(n-4) +(2*n-9)*a(n-5) +(n-5)*a(n-6)=0. - R. J. Mathar, Jan 25 2023