cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308448 Expansion of Sum_{k>=1} mu(k)*log(1 + x^k/(1 - 2*x^k - x^(2*k)))/k.

Original entry on oeis.org

1, 1, 3, 6, 14, 28, 64, 135, 300, 653, 1458, 3223, 7240, 16228, 36678, 83025, 188910, 430730, 985752, 2260866, 5199612, 11982591, 27673826, 64027215, 148399514, 344490100, 800886300, 1864461210, 4346031950, 10142519585, 23696421808, 55420499295, 129742683174, 304014091125
Offset: 1

Views

Author

Ilya Gutkovskiy, May 27 2019

Keywords

Comments

Inverse Euler transform of A000129.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(j-1-a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> combinat[fibonacci](n)+b(n, n-1):
    seq(a(n), n=1..34);  # Alois P. Heinz, May 19 2022
  • Mathematica
    nmax = 34; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + x^k/(1 - 2 x^k - x^(2 k))]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    nmax = 40; s = ConstantArray[0, nmax]; Do[s[[j]] = j*Fibonacci[j, 2] - Sum[s[[d]]*Fibonacci[j - d, 2], {d, 1, j - 1}], {j, 1, nmax}]; Table[Sum[MoebiusMu[k/d]*s[[d]], {d, Divisors[k]}]/k, {k, 1, nmax}] (* Vaclav Kotesovec, Aug 10 2019 *)

Formula

-1 + Product_{n>=1} 1/(1 - x^n)^a(n) = g.f. of A000129.
a(n) ~ (1 + sqrt(2))^n/n. - Vaclav Kotesovec, May 28 2019
"CHK" (necklace, identity, unlabeled) transform of A000045. - Alois P. Heinz, May 19 2022