A308462 Expansion of e.g.f. exp(Sum_{k>=1} psi(k)*x^k/k), where psi() is the Dedekind psi function (A001615).
1, 1, 4, 18, 114, 810, 7560, 71820, 822780, 10086300, 139532400, 2035618200, 33149655000, 562448086200, 10416443637600, 202624824402000, 4207527414090000, 91475485119018000, 2114681171586984000, 50821588411117524000, 1289125346347418580000
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..440
Programs
-
Mathematica
nmax = 20; CoefficientList[Series[Exp[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]! a[n_] := a[n] = Sum[Product[1 + Boole[PrimeQ[d]]/d, {d, Divisors[k]}] k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}]
Formula
log(a(n)/n!) ~ 2*sqrt(15*n)/Pi. - Vaclav Kotesovec, Oct 31 2024