cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308473 Sum of numbers < n which have common prime factors with n.

Original entry on oeis.org

0, 0, 0, 2, 0, 9, 0, 12, 9, 25, 0, 42, 0, 49, 45, 56, 0, 99, 0, 110, 84, 121, 0, 180, 50, 169, 108, 210, 0, 315, 0, 240, 198, 289, 175, 414, 0, 361, 273, 460, 0, 609, 0, 506, 450, 529, 0, 744, 147, 725, 459, 702, 0, 945, 385, 868, 570, 841, 0, 1290, 0, 961, 819, 992, 520
Offset: 1

Views

Author

Ilya Gutkovskiy, May 29 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 65; CoefficientList[Series[-x^2 (2 - x)/(1 - x)^2 - Sum[MoebiusMu[k] k x^k/(1 - x^k)^3, {k, 2, nmax}], {x, 0, nmax}], x] // Rest
    a[n_] := Sum[If[GCD[n, k] > 1, k, 0], {k, 1, n - 1}]; Table[a[n], {n, 1, 65}]
    Join[{0}, Table[n (n - EulerPhi[n] - 1)/2, {n, 2, 65}]]
  • PARI
    a(n) = sum(k=1, n-1, if (gcd(n,k)>1, k)); \\ Michel Marcus, May 31 2019
    
  • Python
    from sympy import totient
    def A308473(n): return n*(n-totient(n)-1)>>1 if n>1 else 0 # Chai Wah Wu, Nov 06 2023

Formula

G.f.: -x^2*(2 - x)/(1 - x)^2 - Sum_{k>=2} mu(k)*k*x^k/(1 - x^k)^3.
a(n) = Sum_{k=1..n-1, gcd(n,k) > 1} k.
a(n) = n*(n - phi(n) - 1)/2 for n > 1
a(n) = n*A016035(n)/2.
a(n) = A000217(n-1) - A023896(n) for n > 1.
a(n) = A067392(n) - n for n > 1.
a(n) = 0 if n is in A008578.
Sum_{k=1..n} a(k) ~ (1/6 - 1/Pi^2)*n^3. - Vaclav Kotesovec, May 30 2019