A308473 Sum of numbers < n which have common prime factors with n.
0, 0, 0, 2, 0, 9, 0, 12, 9, 25, 0, 42, 0, 49, 45, 56, 0, 99, 0, 110, 84, 121, 0, 180, 50, 169, 108, 210, 0, 315, 0, 240, 198, 289, 175, 414, 0, 361, 273, 460, 0, 609, 0, 506, 450, 529, 0, 744, 147, 725, 459, 702, 0, 945, 385, 868, 570, 841, 0, 1290, 0, 961, 819, 992, 520
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Mathematica
nmax = 65; CoefficientList[Series[-x^2 (2 - x)/(1 - x)^2 - Sum[MoebiusMu[k] k x^k/(1 - x^k)^3, {k, 2, nmax}], {x, 0, nmax}], x] // Rest a[n_] := Sum[If[GCD[n, k] > 1, k, 0], {k, 1, n - 1}]; Table[a[n], {n, 1, 65}] Join[{0}, Table[n (n - EulerPhi[n] - 1)/2, {n, 2, 65}]]
-
PARI
a(n) = sum(k=1, n-1, if (gcd(n,k)>1, k)); \\ Michel Marcus, May 31 2019
-
Python
from sympy import totient def A308473(n): return n*(n-totient(n)-1)>>1 if n>1 else 0 # Chai Wah Wu, Nov 06 2023
Formula
G.f.: -x^2*(2 - x)/(1 - x)^2 - Sum_{k>=2} mu(k)*k*x^k/(1 - x^k)^3.
a(n) = Sum_{k=1..n-1, gcd(n,k) > 1} k.
a(n) = n*(n - phi(n) - 1)/2 for n > 1
a(n) = n*A016035(n)/2.
a(n) = A067392(n) - n for n > 1.
a(n) = 0 if n is in A008578.
Sum_{k=1..n} a(k) ~ (1/6 - 1/Pi^2)*n^3. - Vaclav Kotesovec, May 30 2019