A308475 a(1) = 1; a(n) = Sum_{k=1..n-1, gcd(n,k) = 1} binomial(n,k)*a(k).
1, 2, 9, 40, 315, 1896, 21651, 191360, 2546487, 28064080, 488517183, 5879603280, 124673371719, 1928346159572, 42684093159480, 754925802649360, 20289814995554811, 366300418631427144, 11352374441063693655, 250187625076714423520, 7774760839170720287739
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..425
Programs
-
Maple
a:= proc(n) option remember; if n=1 then 1; else add( `if`(gcd(n,j)=1, binomial(n,j)*a(j), 0), j=1..n-1); end if; end proc; seq(a(n), n = 1..30); # G. C. Greubel, Mar 08 2021
-
Mathematica
a[n_] := Sum[If[GCD[n, k] == 1, Binomial[n, k] a[k], 0], {k, 1, n - 1}]; a[1] = 1; Table[a[n], {n, 1, 21}]
-
Sage
@CachedFunction def a(n): if n==1: return 1 else: return sum( kronecker_delta(gcd(n,j), 1)*binomial(n,j)*a(j) for j in (1..n-1) ) [a(n) for n in (1..30)] # G. C. Greubel, Mar 08 2021