A308484 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. log(1 + Sum_{j>=1} j^k * x^j/j!).
1, 1, 0, 1, 1, 0, 1, 3, -1, 0, 1, 7, -1, -2, 0, 1, 15, 5, -26, 9, 0, 1, 31, 35, -146, 29, 6, 0, 1, 63, 149, -650, -351, 756, -155, 0, 1, 127, 539, -2642, -5251, 9936, -1793, 232, 0, 1, 255, 1805, -10346, -46071, 83376, 51421, -45744, 3969, 0
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 0, 1, 3, 7, 15, 31, ... 0, -1, -1, 5, 35, 149, ... 0, -2, -26, -146, -650, -2642, ... 0, 9, 29, -351, -5251, -46071, ... 0, 6, 756, 9936, 83376, 559656, ... 0, -155, -1793, 51421, 1623439, 28735405, ...
Links
- Seiichi Manyama, Antidiagonals n = 1..140, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_] := T[n, k] = n^k - Sum[Binomial[n-1,j] * j^k * T[n-j,k], {j,1,n-1}]; Table[T[k, n - k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 12 2021 *)
Formula
A(n,k) = n^k - Sum_{j=1..n-1} binomial(n-1,j)*j^k*A(n-j,k).