A308487 a(n) is the least prime p such that the total number of prime factors, with multiplicity, of the numbers between p and the next prime is n.
3, 11, 59, 71, 239, 7, 13, 103, 97, 79, 127, 73, 23, 31, 61, 157, 373, 383, 251, 89, 359, 401, 683, 701, 139, 337, 283, 241, 211, 631, 1471, 199, 1399, 661, 113, 619, 1511, 509, 293, 953, 317, 773, 1583, 863, 2423, 1831, 2251, 1933, 1381, 4057, 2803, 523, 1069, 2861, 1259, 1759, 3803, 4159, 4703
Offset: 2
Keywords
Examples
a(8) = 13 because between 13 and the next prime, 17, are 14 with 2 prime factors, 15 with 2, 16 with 4 (counted with multiplicity), for a total of 2+2+4=8, and this is the first prime for which the total of 8 occurs.
Links
- Robert Israel, Table of n, a(n) for n = 2..923
Programs
-
Maple
N:= 100: # to get a(2)..a(N) V:= Array(2..N): count:= 0: q:= 3: while count < N-1 do p:= q; q:= nextprime(q); v:= add(numtheory:-bigomega(t),t=p+1..q-1); if v > N or V[v] > 0 then next fi; V[v]:= p; count:= count+1; od: convert(V,list);
-
Mathematica
Module[{nn=60,pfm},pfm=Table[{p,Total[PrimeOmega[Range[Prime[p]+1,Prime[ p+1]-1]]]},{p,2,1000}];Prime[#]&/@Table[SelectFirst[pfm,#[[2]]==n&],{n,2,nn}]][[All,1]] (* Harvey P. Dale, Aug 25 2022 *)
-
PARI
count(start, end) = my(i=0); for(k=start+1, end-1, i+=bigomega(k)); i a(n) = forprime(p=1, , if(count(p, nextprime(p+1))==n, return(p))) \\ Felix Fröhlich, May 31 2019
Comments