cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A308499 Expansion of e.g.f. log(1 + Sum_{k>=1} (k+1)*(k+2)/6 * x^k).

Original entry on oeis.org

0, 1, 3, 10, 34, 104, 200, -400, -2800, 85120, 2163840, 30240000, 285331200, 1247769600, -15759744000, -392840448000, -1587505920000, 123384188928000, 4345827053568000, 82159404687360000, 749393890172928000, -10215518583029760000, -570363673124044800000, -9916595355495628800000
Offset: 0

Views

Author

Seiichi Manyama, Jun 01 2019

Keywords

Crossrefs

Column k=3 of A308497.

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = ((n+2)! - Sum[Binomial[n-1,k] * (k+2)! * a[n-k], {k,1,n-1}])/6; Array[a, 24, 0] (* Amiram Eldar, May 12 2021 *)
    nmax = 25; CoefficientList[Series[Log[2/3 + 1/(3*(1 - x)^3)], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, May 12 2021 *)
  • PARI
    {a(n) = if (n<1, 0, ((n+2)!-sum(k=1, n-1, binomial(n-1, k)*(k+2)!*a(n-k)))/6)}

Formula

a(n) = (1/6) * ((n+2)! - Sum_{k=1..n-1} binomial(n-1,k) * (k+2)! * a(n-k)).
From Vaclav Kotesovec, May 12 2021: (Start)
E.g.f: log(2/3 + 1/(3*(1 - x)^3)).
a(n) ~ -2^(n/2 + 1) * (n-1)! * cos(n*arctan(sqrt(3)/(1 - 2^(4/3)))) / (2 + 2^(1/3) - 2^(2/3))^(n/2). (End)

A344217 Expansion of e.g.f. log(1 + (1/(1-x)^4 - 1)/4).

Original entry on oeis.org

0, 1, 4, 17, 69, 204, -330, -12510, -110250, -42840, 16760520, 332942400, 3258208800, -13239903600, -1299112214400, -28283225770800, -232265443410000, 6756753459456000, 338710300424496000, 7139034325607184000, 19827438602379408000, -4654590583125843360000
Offset: 0

Views

Author

Vaclav Kotesovec, May 12 2021

Keywords

Crossrefs

Column k=4 of A308497.

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Log[1 + (1/(1 - x)^4 - 1)/4], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ -2*(n-1)! * cos(n*arctan(1/(1 - sqrt(2)*3^(1/4)))) / (1 + 1/sqrt(3) - sqrt(2)/3^(1/4))^(n/2).

A344218 Expansion of e.g.f. log(1 + (1/(1-x)^5 - 1)/5).

Original entry on oeis.org

0, 1, 5, 26, 126, 408, -1704, -51696, -555408, -1217664, 93550464, 2424183552, 30038190336, -114098181120, -16707096806400, -459530721441792, -5231858686838784, 130925278326915072, 9038174050387722240, 246578101419998380032, 1534994756662100557824
Offset: 0

Views

Author

Vaclav Kotesovec, May 12 2021

Keywords

Comments

In general, column k > 2 of A308497 is asymptotic to -2*(n-1)! * cos(n*arctan(sin(Pi/k)/(cos(Pi/k) - (k-1)^(1/k)))) / (1 + 1/(k-1)^(2/k) - 2*cos(Pi/k)/(k-1)^(1/k))^(n/2).

Crossrefs

Column k=5 of A308497.

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Log[1 + (1/(1 - x)^5 - 1)/5], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ -2*(n-1)! * cos(n*arctan(5^(1/4) / (phi^(1/2)*(phi - 2^(7/5))))) / (1 + 1/2^(4/5) - phi/2^(2/5))^(n/2), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
Showing 1-3 of 3 results.