cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A308497 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. log(1 + Sum_{j>=1} binomial(j+k-1,k) * x^j/j).

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 6, 8, 1, 4, 10, 15, 24, 26, 1, 5, 17, 34, 54, 120, 194, 1, 6, 26, 69, 104, 240, 720, 1142, 1, 7, 37, 126, 204, 200, 1350, 5040, 9736, 1, 8, 50, 211, 408, -330, -400, 9450, 40320, 81384, 1, 9, 65, 330, 794, -1704, -12510, -2800, 78120, 362880, 823392
Offset: 1

Views

Author

Seiichi Manyama, Jun 01 2019

Keywords

Comments

Column k > 2 is asymptotic to -2*(n-1)! * cos(n*arctan(sin(Pi/k)/(cos(Pi/k) - (k-1)^(1/k)))) / (1 + 1/(k-1)^(2/k) - 2*cos(Pi/k)/(k-1)^(1/k))^(n/2). - Vaclav Kotesovec, May 12 2021

Examples

			Square array begins:
     1,   1,    1,    1,      1,      1, ...
     0,   1,    2,    3,      4,      5, ...
     1,   2,    5,   10,     17,     26, ...
     1,   6,   15,   34,     69,    126, ...
     8,  24,   54,  104,    204,    408, ...
    26, 120,  240,  200,   -330,  -1704, ...
   194, 720, 1350, -400, -12510, -51696, ...
		

Crossrefs

Columns k=0..5 give A089064, A000142(n-1), (-1)^(n+1) * A009383(n), A308499, A344217, A344218.

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = ((n+k-1)! - Sum[Binomial[n-1,j] * (j+k-1)! * T[n-j,k], {j,1,n-1}])/k!; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 12 2021 *)

Formula

A(n,k) = (1/k!) * ((n+k-1)! - Sum_{j=1..n-1} binomial(n-1,j) * (j+k-1)! * A(n-j,k)).
E.g.f.: log(1 + (1/(1-x)^k - 1)/k). - Vaclav Kotesovec, May 12 2021
Showing 1-1 of 1 results.