A308504 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} d^(n+k).
1, 1, 5, 1, 9, 28, 1, 17, 82, 273, 1, 33, 244, 1057, 3126, 1, 65, 730, 4161, 15626, 47450, 1, 129, 2188, 16513, 78126, 282252, 823544, 1, 257, 6562, 65793, 390626, 1686434, 5764802, 16843009, 1, 513, 19684, 262657, 1953126, 10097892, 40353608, 134480385, 387440173
Offset: 1
Examples
a(4) = a(2*3/2 + 1) = sigma_3(1) = 1. a(5) = a(2*3/2 + 2) = sigma_3(2) = 1^3 + 2^3 = 9. a(6) = a(2*3/2 + 3) = sigma_3(3) = 1^3 + 3^3 = 28. Square array begins: 1, 1, 1, 1, 1, ... 5, 9, 17, 33, 65, ... 28, 82, 244, 730, 2188, ... 273, 1057, 4161, 16513, 65793, ... 3126, 15626, 78126, 390626, 1953126, ... 47450, 282252, 1686434, 10097892, 60526250, ...
Links
Crossrefs
Programs
-
Mathematica
T[n_, k_] := DivisorSum[n, #^(n+k) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)
Formula
L.g.f. of column k: -log(Product_{j>=1} (1 - (j*x)^j)^(j^(k-1))).
a((i-1)*i/2 + j) = sigma_i(j) for 1 <= j <= i.