cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A277458 Expansion of e.g.f. -1/(1-LambertW(-x)).

Original entry on oeis.org

-1, 1, 0, 3, 16, 165, 2016, 30415, 539904, 11049129, 256038400, 6627314331, 189517916160, 5933803272397, 201893195083776, 7417376809230375, 292648536838045696, 12341039738944113105, 553942486234823786496, 26369048375194607316019, 1326864458454400696320000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2016

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*add((-1)^(k+1)*k*n^(n-k-1)/(n-k)!, k = 1..n), n = 1..20); # Peter Bala, Jul 23 2021
  • Mathematica
    CoefficientList[Series[-1/(1-LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]!
  • PARI
    my(x='x+O('x^50)); Vec(serlaplace(-1/(1 - lambertw(-x)))) \\ G. C. Greubel, Nov 07 2017

Formula

a(n) ~ n^(n-1) / 4.
a(n) = n!*Sum_{k = 1..n} (-1)^(k+1)*k*n^(n-k-1)/(n-k)! for n >= 1. Cf. A133297. - Peter Bala, Jul 23 2021
a(n) = (-1)^(n+1)*U(1-n, -n, -n) where U is the Kummer U function. - Peter Luschny, Jan 23 2025

A277510 E.g.f.: -1/(1-LambertW(-x))^2.

Original entry on oeis.org

-1, 2, -2, 6, 8, 170, 1872, 29246, 519808, 10698642, 248787200, 6458737142, 185138721792, 5808233422394, 197952647108608, 7283047491096750, 287705410381709312, 12145740050403520034, 545696709922799419392, 25998534614835587104742, 1309210567403228200960000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 18 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-1/(1-LambertW[-x])^2, {x, 0, 20}], x] * Range[0, 20]!
  • PARI
    x='x+O('x^50); Vec(serlaplace(-1/(1 - lambertw(-x))^2)) \\ G. C. Greubel, Nov 08 2017

Formula

a(n) ~ n^(n-1) / 4.
Showing 1-2 of 2 results.