A308569 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*n).
1, 1, 2, 1, 5, 2, 1, 17, 28, 3, 1, 65, 730, 273, 2, 1, 257, 19684, 65793, 3126, 4, 1, 1025, 531442, 16781313, 9765626, 47450, 2, 1, 4097, 14348908, 4295032833, 30517578126, 2177317874, 823544, 4, 1, 16385, 387420490, 1099512676353, 95367431640626, 101560344351050, 678223072850, 16843009, 3
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, ... 2, 5, 17, 65, 257, ... 2, 28, 730, 19684, 531442, ... 3, 273, 65793, 16781313, 4295032833, ... 2, 3126, 9765626, 30517578126, 95367431640626, ...
Links
- Seiichi Manyama, Antidiagonals n = 1..52, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_] := DivisorSum[n, #^(k*n) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)
-
PARI
T(n,k) = sumdiv(n, d, d^(k*n)); matrix(5, 5, n, k, T(n,k-1)) \\ Michel Marcus, Jun 08 2019
Formula
L.g.f. of column k: -log(Product_{j>=1} (1 - (j^k*x)^j)^(1/j)).