A308617 Integers i such that the equation A088387(i) = p has N > 1 solutions in the interval prevprime(i)..nextprime(i).
140, 147, 621, 630, 2184, 2197, 2511, 2520, 3230, 3249, 3740, 3757, 4180, 4199, 5750, 5775, 9975, 10000, 19635, 19652, 26600, 26625, 30600, 30625, 40040, 40053, 43355, 43384, 45900, 45927, 50232, 50255, 50600, 50625, 64515, 64538, 67320, 67337, 68400, 68425
Offset: 1
Keywords
Examples
Between primes 139 and 149: A088387(140) = A088387(147) = 7. Between primes 619 and 631: A088387(621) = A088387(630) = 3. Between primes 8752871 and 8752987: A088387(8752880) = A088387(8752951) = 71 and A088387(8752926) = A088387(8752967) = 41. Between primes 33622489 and 33622607: A088387(33622507) = A088387(33622600) = 31.
Links
- Robert Israel, Table of n, a(n) for n = 1..1148
Crossrefs
Programs
-
MATLAB
n = 0; ip = 0; for m = 1:oo if isprime(m) ip = ip + 1; end if A088387(m) == m & m > 1 for i = A007917(ip):A007918(ip) for j = A007917(ip):A007918(ip) if A088387(i) == A088387(j) & i ~= j n = n + 1; a(n) = i; end end end end end
-
Maple
A88387:= proc(n) local F,j; F:= ifactors(n)[2]; F[max[index](map(t -> t[1]^t[2],F)),1] end proc: R:= NULL: count:= 0: q:= 2: while count < 100 do p:= nextprime(q); L:= [$(q+1)..(p-1)]; V:= map(A88387,L); S:= select(t -> numboccur(t,V) > 1, convert(V,set)); J:= select(i -> member(V[i],S),[$1..p-q-1]); count:= count+nops(J); R:= R, op(L[J]); q:= p; od: R; # Robert Israel, Jun 20 2024
-
Mathematica
A088387[n_] := MaximalBy[FactorInteger[n], Power @@ # &][[1, 1]]; A034699[n_] := If[n == 1, 1, Max[#[[1]]^#[[2]] & /@ FactorInteger@n]]; t = Table[Table[A088387[n],{n, Prime[k], Prime[k + 1]-1}], {k, 2,12000} ]; duplicates = Select[t, Not@DuplicateFreeQ[#] &]; a = {}; pickFrom[list_] := Do[If[Count[list, list[[k]]] > 1 , a = Append[a, k - 1 + First[list]]], {k, 2, Length[list]}]; pickFrom /@ duplicates; a (* Jianglin Luo, Dec 01 2023 *)
-
PARI
plppf(n) = if(1==n, 1, my(f=factor(n), p=0); isprimepower(vecmax(vector(#f[, 1], i, f[i, 1]^f[i, 2])), &p); (p)); \\ A088387 lista(nn) = {for (n=1, nn, my(p = prime(n), q = nextprime(p+1)); my(v = vector(q-p-1, k, plppf(k+p)), vs = vecsort(v,,8)); if (#v != #vs, for (i=1, #vs, my(vx = select(x->(x==vs[i]), v, 1)); if (#vx > 1, for (j=1, #vx, print1(p+vx[j], ", "));););););} \\ Michel Marcus, Jun 27 2019
Comments