cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308617 Integers i such that the equation A088387(i) = p has N > 1 solutions in the interval prevprime(i)..nextprime(i).

Original entry on oeis.org

140, 147, 621, 630, 2184, 2197, 2511, 2520, 3230, 3249, 3740, 3757, 4180, 4199, 5750, 5775, 9975, 10000, 19635, 19652, 26600, 26625, 30600, 30625, 40040, 40053, 43355, 43384, 45900, 45927, 50232, 50255, 50600, 50625, 64515, 64538, 67320, 67337, 68400, 68425
Offset: 1

Views

Author

I. V. Serov & Michel Marcus, Jun 25 2019

Keywords

Comments

Conjecture: N = 2. Checked up to 10^8.

Examples

			Between primes 139 and 149: A088387(140) = A088387(147) = 7.
Between primes 619 and 631: A088387(621) = A088387(630) = 3.
Between primes 8752871 and 8752987: A088387(8752880) = A088387(8752951) = 71 and A088387(8752926) = A088387(8752967) = 41.
Between primes 33622489 and 33622607: A088387(33622507) = A088387(33622600) = 31.
		

Crossrefs

Cf. A007917 (prevprime), A007918 (nextprime), A088387, A034699, A308752 (analog), A038610.

Programs

  • MATLAB
    n = 0; ip = 0;
    for m = 1:oo
    if isprime(m) ip = ip + 1; end
    if A088387(m) == m & m > 1
      for i = A007917(ip):A007918(ip)
       for j = A007917(ip):A007918(ip)
        if A088387(i) == A088387(j) & i ~= j
         n = n + 1; a(n) = i;
        end
       end
      end
    end
    end
    
  • Maple
    A88387:= proc(n) local F,j;
      F:= ifactors(n)[2];
      F[max[index](map(t -> t[1]^t[2],F)),1]
    end proc:
    R:= NULL: count:= 0:
    q:= 2:
    while count < 100 do
      p:= nextprime(q);
      L:= [$(q+1)..(p-1)];
      V:= map(A88387,L);
      S:= select(t -> numboccur(t,V) > 1, convert(V,set));
      J:= select(i -> member(V[i],S),[$1..p-q-1]);
      count:= count+nops(J);
      R:= R, op(L[J]);
      q:= p;
    od:
    R; # Robert Israel, Jun 20 2024
  • Mathematica
    A088387[n_] := MaximalBy[FactorInteger[n], Power @@ # &][[1, 1]]; A034699[n_] := If[n == 1, 1, Max[#[[1]]^#[[2]] & /@ FactorInteger@n]]; t = Table[Table[A088387[n],{n, Prime[k], Prime[k + 1]-1}], {k, 2,12000}  ]; duplicates = Select[t, Not@DuplicateFreeQ[#] &]; a = {}; pickFrom[list_] := Do[If[Count[list, list[[k]]] > 1 , a = Append[a, k - 1 + First[list]]], {k, 2, Length[list]}]; pickFrom /@ duplicates; a (* Jianglin Luo, Dec 01 2023 *)
  • PARI
    plppf(n) = if(1==n, 1, my(f=factor(n), p=0); isprimepower(vecmax(vector(#f[, 1], i, f[i, 1]^f[i, 2])), &p); (p)); \\ A088387
    lista(nn) = {for (n=1, nn, my(p = prime(n), q = nextprime(p+1)); my(v = vector(q-p-1, k, plppf(k+p)), vs = vecsort(v,,8)); if (#v != #vs, for (i=1, #vs, my(vx = select(x->(x==vs[i]), v, 1)); if (#vx > 1, for (j=1, #vx, print1(p+vx[j], ", "));););););} \\ Michel Marcus, Jun 27 2019