A308667 (1/n) times the number of n-member subsets of [n^2] whose elements sum to a multiple of n.
1, 1, 10, 115, 2126, 54086, 1753074, 69159399, 3220837534, 173103073384, 10551652603526, 719578430425845, 54297978110913252, 4492502634538340722, 404469190271900056316, 39370123445405248353743, 4120204305690280446004838, 461365717080848755611811094
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..339
- Romeo Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; add(phi(n/d)* (-1)^(n+d)*binomial(n*d, d), d=divisors(n))/n^2 end: seq(a(n), n=1..20);
-
Mathematica
a[n_] := a[n] = Sum[EulerPhi[n/d]* (-1)^(n + d)*Binomial[n*d, d], {d, Divisors[n]}]/n^2; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Mar 24 2022, after Alois P. Heinz *)
Formula
a(n) = A309148(n,n).
a(n) = (1/n) * A318477(n).
a(p) == 1 (mod p^3) for all primes p >= 5 (apply Meštrović, Remark 17, p. 12). - Peter Bala, Mar 28 2023
a(n) ~ exp(n - 1/2) * n^(n - 5/2) / sqrt(2*Pi). - Vaclav Kotesovec, Mar 28 2023