cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A308676 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(d^k * n/d).

Original entry on oeis.org

1, 1, 3, 1, 5, 4, 1, 17, 28, 9, 1, 257, 19684, 273, 6, 1, 65537, 7625597484988, 4294967553, 3126, 24, 1, 4294967297, 443426488243037769948249630619149892804, 340282366920938463463374607431768276993, 298023223876953126, 47450, 8
Offset: 1

Views

Author

Seiichi Manyama, Jun 16 2019

Keywords

Examples

			Square array begins:
   1,    1,          1,                                       1, ...
   3,    5,         17,                                     257, ...
   4,   28,      19684,                           7625597484988, ...
   9,  273, 4294967553, 340282366920938463463374607431768276993, ...
		

Crossrefs

Columns k=0..3 give A055225, A023887, A308670, A308675.
Cf. A308674.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, #^(n * #^(k-1)) &]; Table[T[k, n - k], {n, 1, 7}, {k, 1, n}] // Flatten (* Amiram Eldar, May 09 2021 *)

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - j^(j^k) * x^j)^(1/j)).

A308671 a(n) = Sum_{d|n} d^(d^2).

Original entry on oeis.org

1, 17, 19684, 4294967313, 298023223876953126, 10314424798490535546171968756, 256923577521058878088611477224235621321608, 6277101735386680763835789423207666416102355444468329480209
Offset: 1

Views

Author

Seiichi Manyama, Jun 16 2019

Keywords

Crossrefs

Column k=2 of A308674.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(#^2) &]; Array[a, 8] (* Amiram Eldar, May 11 2021 *)
  • PARI
    {a(n) = sumdiv(n, d, d^d^2)}
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^(k^(k^2-1))))))

Formula

L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(k^2-1))) = Sum_{k>=1} a(k)*x^k/k.

A308672 a(n) = Sum_{d|n} d^(d^3).

Original entry on oeis.org

1, 257, 7625597484988, 340282366920938463463374607431768211713, 2350988701644575015937473074444491355637331113544175043017503412556834518909454345703126
Offset: 1

Views

Author

Seiichi Manyama, Jun 16 2019

Keywords

Comments

The next term (a(6)) has 169 digits. - Harvey P. Dale, Sep 08 2020

Crossrefs

Column k=3 of A308674.

Programs

  • Mathematica
    Table[Total[Divisors[n]^Divisors[n]^3],{n,5}] (* Harvey P. Dale, Sep 08 2020 *)
    a[n_] := DivisorSum[n, #^(#^3) &]; Array[a, 5] (* Amiram Eldar, May 11 2021 *)
  • PARI
    {a(n) = sumdiv(n, d, d^d^3)}
    
  • PARI
    N=10; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^(k^(k^3-1))))))

Formula

L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(k^3-1))) = Sum_{k>=1} a(k)*x^k/k.
Showing 1-3 of 3 results.