cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308675 a(n) = Sum_{d|n} d^(d^2 * n).

Original entry on oeis.org

1, 257, 7625597484988, 340282366920938463463374607431768276993, 2350988701644575015937473074444491355637331113544175043017503412556834518909454345703126
Offset: 1

Views

Author

Seiichi Manyama, Jun 16 2019

Keywords

Comments

The next term has 169 digits. - Harvey P. Dale, Feb 29 2020

Crossrefs

Column k=3 of A308676.

Programs

  • Mathematica
    Table[Total[#^(#^2 n)&/@Divisors[n]],{n,5}] (* Harvey P. Dale, Feb 29 2020 *)
    a[n_] := DivisorSum[n, #^(n * #^2) &]; Array[a, 5] (* Amiram Eldar, May 11 2021 *)
  • PARI
    {a(n) = sumdiv(n, d, d^(d^2*n))}
    
  • PARI
    N=10; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k^k^2*x)^k)^(1/k)))))

Formula

L.g.f.: -log(Product_{k>=1} (1 - (k^(k^2)*x)^k)^(1/k)) = Sum_{k>=1} a(k)*x^k/k.