A308680 Number T(n,k) of colored integer partitions of n such that all colors from a k-set are used and parts differ by size or by color; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 5, 3, 1, 0, 3, 8, 9, 4, 1, 0, 4, 14, 19, 14, 5, 1, 0, 5, 22, 39, 36, 20, 6, 1, 0, 6, 34, 72, 85, 60, 27, 7, 1, 0, 8, 50, 128, 180, 160, 92, 35, 8, 1, 0, 10, 73, 216, 360, 381, 273, 133, 44, 9, 1, 0, 12, 104, 354, 680, 845, 720, 434, 184, 54, 10, 1
Offset: 0
Examples
T(4,1) = 2: 3a1a, 4a. T(4,2) = 5: 2a1a1b, 2b1a1b, 2a2b, 3a1b, 3b1a. T(4,3) = 3: 2a1b1c, 2b1a1c, 2c1a1b. T(4,4) = 1: 1a1b1c1d. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 2, 2, 1; 0, 2, 5, 3, 1; 0, 3, 8, 9, 4, 1; 0, 4, 14, 19, 14, 5, 1; 0, 5, 22, 39, 36, 20, 6, 1; 0, 6, 34, 72, 85, 60, 27, 7, 1; 0, 8, 50, 128, 180, 160, 92, 35, 8, 1; 0, 10, 73, 216, 360, 381, 273, 133, 44, 9, 1; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t-> b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i)))) end: T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k): seq(seq(T(n, k), k=0..n), n=0..12); # second Maple program: b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add( `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n) end: T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, b(n)), (q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2)))) end: seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Jan 31 2021 # Uses function PMatrix from A357368. PMatrix(10, A000009); # Peter Luschny, Oct 19 2022
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]*Binomial[k, j]][n - i*j], {j, 0, Min[k, n/i]}]]]; T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, from Maple *)
Formula
T(n,k) = Sum_{i=0..k} (-1)^i * binomial(k,i) * A286335(n,k-i).
Sum_{k=1..n} k * T(n,k) = A325915(n).
G.f. of column k: (-1 + Product_{j>=1} (1 + x^j))^k. - Alois P. Heinz, Jan 29 2021
Comments