A308700 a(n) = n * 2^(n - 2) * (2^(n - 1) - 1).
0, 0, 2, 18, 112, 600, 2976, 14112, 65024, 293760, 1308160, 5761536, 25153536, 109025280, 469704704, 2013143040, 8589672448, 36506664960, 154617643008, 652832538624, 2748773826560, 11544861081600, 48378488553472, 202310091276288, 844424829468672, 3518436999168000
Offset: 0
Examples
For n = 3, the set X = {1,2,3}, the power set 2^X = {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, X} and the pseudo-graph P represented by 2^X has the following edges, here grouped into... simple loops: {1} --- {1}, {2} --- {2}, {3} --- {3} for a total of 3. double loops: {1,2} --- {1,2}, {1,3} --- {1,3}, {2,3} --- {2,3} for a total of 6 simple loops. triple loop: X --- X for a total of 3 simple loops. simple edges: {1} --- {1,2}, {1} --- {1,3}, {1} --- X, {2} --- {1,2}, {2} --- {2,3}, {2} --- X, {3} --- {1,3}, {3} --- {2,3}, {3} --- X, {1,2} --- {1,3}, {1,2} --- {2,3}, {1,3} --- {2,3} for a total of 12. double edges: {1,2} --- X, {1,3} --- X, {2,3} --- X for a total of 6 simple edges. By deleting the loops in P, there remain a total of a(3) = 12 + 6 = 18 edges for the topological graph arising from P.
Links
- A. M. Kozae, A. A. El Atik, A. Elrokh and M. Atef, New types of graphs induced by topological spaces, Journal of Intelligent & Fuzzy Systems, vol. 36, no. 6 (2019), pp. 5125-5134; on Research Gate.
- Index entries for linear recurrences with constant coefficients, signature (12,-52,96,-64).
Crossrefs
Programs
-
GAP
Flat(List([0..25], n->n*2^(n-2)*(2^(n-1)-1)))
-
Magma
[n*2^(n-2)*(2^(n-1)-1): n in [0..25]];
-
Maple
a:=n->n*2^(n-2)*(2^(n-1)-1): seq(a(n),n=0..25);
-
Mathematica
Table[n 2^(n - 2)(2^(n - 1) - 1), {n, 0, 31}]
-
Maxima
makelist(n*2^(n-2)*(2^(n-1)-1), n, 0, 25);
-
PARI
a(n)=n*2^(n-2)*(2^(n-1)-1);
Formula
O.g.f.: -2 * x^2 * (-1 + 3*x)/((-1 + 2*x)^2 * (-1 + 4*x)^2).
E.g.f.: (1/2) * exp(2*x) * (-1 + exp(2*x)) * x.
a(n) = 12 * a(n - 1) - 52*a(n - 2) + 96*a(n - 3) - 64*a(n - 4) for n > 3.
a(n) = n * 2^(n - 2) * (2^(n - 1) - 1).
Lim_{n -> infinity} a(n)/a(n - 1) = 4.
a(n) = n * A006516(n - 1).
a(n) = n * A171476(n - 2).
a(n) = n * A171496(n - 3).
Comments