A308706 Number of chiral pairs of set partitions of a primitive cycle of n elements having exactly two different elements.
0, 0, 0, 0, 0, 0, 0, 1, 2, 7, 12, 31, 58, 126, 233, 484, 904, 1800, 3395, 6643, 12612, 24457, 46655, 90157, 172750, 333498, 641214, 1238664, 2388618, 4620006, 8931536, 17302033, 33521792, 65042495, 126257160, 245361171, 477087772, 928510506, 1808145395, 3523813566
Offset: 0
Keywords
Examples
For a(7)=1, the chiral pair is 0001011-0001101. For a(8)=2, the chiral pairs are 00001011-00001101 and 00010011-00011001.
Programs
-
Mathematica
Join[{0}, Table[(DivisorSum[NestWhile[#/2 &, n, EvenQ], MoebiusMu[#] 2^(n/#) &]/(2 n) - DivisorSum[n, MoebiusMu[n/#] 2^Floor[#/2] &])/2, {n, 1, 40}]]
-
PARI
a(n) = if (n, (sumdiv(n, d, if (d%2, moebius(d)*2^(n/d)))/(2*n) - sumdiv(n, d, moebius(n/d)*2^(d\2)))/2, 0); \\ Michel Marcus, Jun 27 2019; corrected Jun 12 2022