A308711 Left-truncatable primes in base-10 bijective numeration.
2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 103, 107, 113, 137, 167, 173, 197, 223, 283, 307, 313, 317, 337, 347, 353, 367, 373, 383, 397, 443, 467, 503, 523, 547, 607, 613, 617, 643, 647, 653, 673, 683, 743, 773, 797, 823, 853, 883, 907, 937, 947, 953, 967, 983, 997
Offset: 1
Links
- Robin Houston, Table of n, a(n) for n = 1..8391
- Wikipedia, Bijective numeration
Programs
-
Sage
DIGITS = "123456789X" DECODE = {d: i + 1 for i, d in enumerate(DIGITS)} def decode(s): return reduce(lambda n, c: 10 * n + DECODE[c], s, 0) def search(s): n = decode(s) if n > 0: if not is_prime(n): return yield n for digit in DIGITS: yield from search(digit + s) full = sorted(search("")) full[:10]
Comments