A308757 a(n) = Sum_{d|n} d^(3*(d-2)).
1, 2, 28, 4098, 1953126, 2176782365, 4747561509944, 18014398509486082, 109418989131512359237, 1000000000000000001953127, 13109994191499930367061460372, 237376313799769806328952468217885, 5756130429098929077956071497934208654
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..154
Programs
-
Mathematica
a[n_] := DivisorSum[n, #^(3*(# - 2)) &]; Array[a, 13] (* Amiram Eldar, May 08 2021 *)
-
PARI
{a(n) = sumdiv(n, d, d^(3*(d-2)))}
-
PARI
N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(3*k-7)))))
-
PARI
N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(3*(k-2))*x^k/(1-x^k)))
Formula
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(3*k-7))) = Sum_{k>=1} a(k)*x^k/k.
G.f.: Sum_{k>=1} k^(3*(k-2)) * x^k/(1 - x^k).