cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308770 Sum of the largest parts of the partitions of n into 4 squarefree parts.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 5, 5, 13, 17, 29, 32, 44, 52, 75, 81, 118, 130, 176, 198, 261, 262, 351, 362, 470, 478, 617, 621, 787, 801, 951, 978, 1182, 1184, 1413, 1469, 1747, 1789, 2123, 2160, 2574, 2593, 3012, 3093, 3644, 3679, 4245, 4384, 5024, 5097, 5738, 5891
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 23 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[(n - i - j - k) * MoebiusMu[k]^2*MoebiusMu[j]^2* MoebiusMu[i]^2*MoebiusMu[n - i - j - k]^2, {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]
    Table[Total[Select[IntegerPartitions[n,{4}],AllTrue[#,SquareFreeQ]&][[;;,1]]],{n,0,60}] (* Harvey P. Dale, Oct 04 2023 *)

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k)^2 * (n-i-j-k) , where mu is the Möbius function (A008683).
a(n) = A308783(n) - A308768(n) - A308762(n) - A308769(n).