cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308773 Sum of the second largest parts in the partitions of n into 4 prime parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 5, 6, 5, 11, 8, 13, 12, 20, 17, 28, 15, 32, 26, 41, 24, 53, 33, 75, 48, 83, 57, 103, 54, 126, 80, 143, 71, 170, 93, 219, 112, 217, 122, 276, 120, 310, 145, 320, 148, 376, 160, 446, 190, 443, 218, 532, 196, 587, 240, 613, 246
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 23 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[i (PrimePi[k] - PrimePi[k - 1])*(PrimePi[j] - PrimePi[j - 1]) (PrimePi[i] - PrimePi[i - 1]) (PrimePi[n - i - j - k] - PrimePi[n - i - j - k - 1]), {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]
    Table[Total[Select[IntegerPartitions[n,{4}],AllTrue[#,PrimeQ]&][[;;,2]]],{n,0,70}] (* Harvey P. Dale, May 09 2025 *)

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} c(k) * c(j) * c(i) * c(n-i-j-k) * i, where c = A010051.
a(n) = A308809(n) - A308771(n) - A308772(n) - A308774(n).